Doctoral Dissertation Defense Announcement

“Cardiometabolic Consequences of Early-Life Sodium Depletion”

Alisha A. Ziegler
Candidate for Doctor of Philosophy
Department of Physiology
School of Graduate Studies
Medical College of Wisconsin

Committee in Charge:
Jeffrey Segar, MD (Co-Mentor)
Justin Grobe, PhD (Co-Mentor)
Pablo Nakagawa, PhD
Alison Kriegel, PhD
Andrew Norris, MD PhD

Date: Wednesday April 10th, 2024
Time: 1:00 PM (CST)
Defense Location: Bolger Auditorium
Zoom: Meeting ID: 974 3047 2990 Passcode: b5s8E1pB
https://mcw-edu.zoom.us/j/97430472990?pwd=S05ETGVUTnBtNk54dFBteXI1VVBkQT09
Graduate Studies:

Foundations in Biomedical Sciences I
Foundations in Biomedical Sciences II
Foundations in Biomedical Sciences III
Foundations in Biomedical Sciences IV
Techniques in Molecular and Cellular Biology
Organ Systems Physiology
Fundamentals of Neuroscience
Professional Development
Special Problems in Physiology
Readings and Research
Biostatistics Health Science
Complement to General Human Physiology
Graduate Human Physiology
Functional Genomics
Fundamental Practice Grant Writing
Ethics & Integrity in Science
Current Topics in Physiology
Research Ethics Discussion Series
Doctoral Dissertation
Dissertation Abstract

“Cardiometabolic Consequences of Early-Life Sodium Depletion”

Prematurely born infants face an enhanced risk for chronic diseases later in life, including hypertension, metabolic syndrome, and diabetes. This risk appears to be exacerbated in preterm infants who also experienced postnatal growth failure, which continues to be prevalent despite advancing and aggressive nutritional practices in this population. Sodium balance is often dysregulated in the preterm neonate and is crucial to achieve optimal somatic growth. However, the role this sodium depletion may play in long-term phenotypes remains unknown. The purpose of this project was to establish a working model of “early-life” sodium deprivation and investigate any associated long-term cardiometabolic phenotypes that may arise from adverse sodium availability in early life.

In the first study, mice were given either a low (0.04% Na) or normal/high (0.30% Na) diet from week 3 to week 18 of age. Mice given the low sodium diet displayed delays in somatic growth, as well as an increase in basal metabolic rate. In a follow up study, mice were given either 0.04% Na or 0.30% Na diet between week 3-6 of age and then returned to a standard 0.15% Na diet, to mimic an “early-life” sodium depletion. Previously Na restricted mice displayed programmed changes in feeding behaviors, reduced food intake, increased water intake, and exaggerated energy expenditure despite normal body mass and composition. Administration of hexamethonium, a ganglionic blocker, ameliorated the increase in basal metabolic rate in the previously Na restricted mice. This data indicates that early-life Na restriction is sufficient to cause programmed changes in ingestive behaviors, autonomic nervous system function, and energy expenditure that persist into adulthood.

Next, mice were again given either 0.04% Na or 0.30% Na diet between week 3-6 of age and then returned to a standard 0.15% Na diet, and then were implanted with radio telemeters to assess blood pressure and heart rate, amongst other endpoints. Early-life sodium restriction conferred no effects on blood pressure or heart rate at baseline, however, following a switch onto a high sodium diet (1% Na) as a “second-hit”, mice previously deprived of sodium had an exaggerated increase in both heart rate and systolic blood pressure in response to the high sodium diet compared to control mice. Administration of losartan ameliorated this increase in BP and HR so that both groups were indistinguishable, implicating a renin angiotensin aldosterone system dependent mechanism.

Together, these studies show that early-life sodium depletion is sufficient to program long-term changes in cardiometabolic homeostasis. This may offer mechanistic insight into a preterm neonate’s increased risk of cardiometabolic disease later in life and provide rationale for enhanced sodium monitoring in the postnatal period.
Curriculum Vitae

Alisha A. Ziegler
aziegler@mcw.edu

Education

August 2020-Present
Medical College of Wisconsin
PhD Candidate, Department of Physiology
Mentors: Jeffrey Segar, MD & Justin Grobe, PhD

September 2014- December 2018
University of Wisconsin- Green Bay
B.S., Human Biology, Psychology

Grant Funding

NIH T32 HL007852

Presentations

Low Sodium Supply in Early Life Causes Growth Restriction and Programs Long-Term Changes in Energy Homeostasis (MCW Cardiovascular Center Retreat, Milwaukee WI, December 2021)

Low Sodium Supply in Early Life Causes Growth Restriction and Programs Long-Term Changes in Energy Homeostasis (Experimental Biology, Philadelphia PA, April 2022)

Early Life Sodium Restriction Programs Long-Term Changes in Energy Flux and Autonomic Activity (Hypertension Scientific Sessions, San Diego CA, September 2022)

Long-Term Cardiometabolic and Autonomic Programming due to Early Life Sodium Depletion. (Upper Midwest Chapter of the Society for Neuroscience Annual Conference, Green Bay WI, April 2023)

Early Life Sodium Restriction and Programming of Autonomic and Cardiometabolic Phenotypes (Upper Midwest Chapter of the SFN & MidBrains Combined Conference, Green Bay WI, October 2023)

Effects of Early-Life Sodium Depletion on Growth and Energy Flux. (UWGB Human Biology Seminar Series, Green Bay WI, October 2023)

Publications

Hypertension (Dallas, Tex. : 1979), 80(9), 1871-1880. https://doi.org/10.1161/HYPERTENSIONAHA.122.