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Abstract

In magnetic resonance imaging, complex-valued measurements are acquired in time corresponding to measure-

ments in spatial frequency or k-space. These measurements are “transformed” into a complex-valued image by an

“image reconstruction” method. The most common image reconstruction method is the (inverse) Fourier trans-

form. It is known that image voxels are spatially correlated. A property of the (inverse) Fourier transformation is

that spatially uncorrelated k-space measurements yield spatially uncorrelated voxels and vise versa. Additionally,

spatially correlated voxels result from spatially correlated k-space measurements. This paper examines the result-

ing correlation structure between voxels when Fourier reconstructing spatially correlated k-space observations and

implications to fMRI results. A real-valued isomorphism for the complex-valued data is introduced, and an asso-

ciated multivariate normal distribution. The signal and noise characteristics of both simulated and experimental

phantom data are examined. It was found that autocorrelated observations along the spatial frequency trajectory

within but not between the real and imaginary components in k-space produce voxels after Fourier reconstruction

that have correlation both within and between real and imaginary components. One implication of these results is

that one source of spatial correlation between voxels may be (temporally) autocorrelated observations in k-space.

1 Introduction

In magnetic resonance imaging, we aim to image the effective density of proton “spins” in a real-valued physical

object. In magnetic resonance imaging (MRI), complex-valued measurements are acquired in spatial frequency space

(usually two dimensional), also called k-space from the use of the k variables for its axes (kx, ky). These measurements

are “transformed” into a complex-valued image by an “image reconstruction” method. The most common image

reconstruction method is the inverse Fourier transform.

In MRI/fMRI, a set of differential equations (Bloch, 1946, Bloch et al., 1946) describes the time dependent

behavior of the bulk magnetization in applied magnetic fields. By Faraday’s law of induction a voltage is induced in
∗Corresponding Author: Daniel B. Rowe, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road,
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a receive coil that is placed near the sample. It is the voltage/signal in the wire s(t) that we measure over time. By

varying gradient magnetic fields in a particular way known as “Fourier encoding,” the argument of the signal s(t)

can be rewritten in terms of complex-valued spatial frequencies (kx(t), ky(t)) and given by

s(kx, ky) =
∫ ∫

ρ(x, y)e−i2π[kx(t)x+ky(t)y] dx dy

where ρ(x, y) is the effective proton spin density image, kx(t) = γ
2π

∫ t

0 Gx(t′)dt′, and ky(t) = γ
2π

∫ t

0 Gy(t′)dt′. For

Hydrogen nuclei, γ/(2π) = 42.58MHz/T. Although s(t) is real-valued and measured over time, we complex demod-

ulate it and form s(kx, ky) usually on or resampled to a Cartesian (kx, ky) grid. The above signal equation with

Figure 1: k-space measurements
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(a) real frequencies
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(b) imaginary frequencies
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(c) magnitude frequencies
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(d) phase frequencies

homogeneity assumptions characterizes the observed two dimensional complex-valued signal as the Fourier transform

(FT) of the effective proton spin density (PSD). We measure the complex-valued spatial frequency spectrum (an

example from phantom data to be described later is shown in Fig. 1) and perform an inverse Fourier transform

(IFT) to obtain the effective proton spin density (an example of which as shown in Fig. 2). Mathematically this is
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represented as

ρ(x, y)︸ ︷︷ ︸
Complex

=
∫ ∫

s(kx, ky)︸ ︷︷ ︸
Complex

ei2π(kxx+kyy) dkx dky .

This is done by taking successive measurements in time of a real-valued signal, a voltage in a wire. The time axis is

transformed to the spatial frequency or k-space axis. This physical signal or voltage is real-valued, but it is “complex

demodulated.”

Figure 2: Fourier reconstructed images

12 24 36 48 60 72 84 96

12

24

36

48

60

72

84

96

(a) real image
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(b) imaginary image
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(c) magnitude image
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(d) phase image

In measuring the signal, each complex-valued point measurement is obtained by taking pairs of real-valued signal

measurements where the first in the pair is multiplied by a cosine and the second by a sine to obtain real (in-phase)

and imaginary (quadrature) parts. In taking the pairs of measurements, either one or two analog-to-digital (A-to-D)

converters are utilized. If there is a single A-to-D converter, successive signal measurements are alternately multiplied

by either a cosine or a sine to obtain real (in-phase) and imaginary (quadrature) parts. These two measurements are

then shifted either half a step forward or backward to temporally align them. If there are two A-to-D converters,
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two measurements, one from each A-to-D, are then taken at the same time with the first multiplied by a cosine and

the second by a sine.

These discrete complex-valued measurements, when placed at their proper spatial frequency location, are the

discrete FT of the PSD. A discrete IFT is applied to the discretely measured signal to “reconstruct” the PSD. The

original object or PSD is real valued, but due to imperfections in the imaging process, a complex image of PSDs is

produced (Haacke et al., 1999).

After Fourier (or non-Fourier) image reconstruction, each voxel contains a complex-valued time course of real and

imaginary components of the measured PSD. It is known that image voxels are spatially correlated, as evidenced in

magnitude-only fMRI data. A property of the (inverse) Fourier transformation is that spatially uncorrelated k-space

measurements yield spatially uncorrelated voxels and vise versa. Additionally, spatially correlated voxels result from

spatially correlated k-space measurements. The thrust of this paper is to examine the noise characteristics in k-space

data and Fourier reconstructed images. Implications for fMRI will also be discussed. This will be done with both

one and two dimensional images focusing a subset of the data in the central portion of k-space for a single axial slice.

2 Models

In this section, the observed complex-valued signal over space is examined for a single time point image. The

complex-valued (inverse) Fourier transformation commonly used for magnetic resonance (MR) image reconstruction

of the observed complex-valued spatial frequencies is described. This is done for both a one dimensional image, where

the characteristics are clearer, and for a two dimensional image.

2.1 One Dimension

Consider a one dimensional complex-valued MR image that is 1 × px acquired from left to right. In a one

dimensional echo planar MRI, complex-valued k-space measurements are taken in time but correspond to specific

spatial frequencies on this (kx, ky = 0) grid as in Fig. 3. Let sC = (sC1, ..., sCpx)′ be a px × 1 complex-valued vector

Figure 3: 1D k-space trajectory.
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of one dimensional image spatial frequencies such that

sC = s0C + εC

px × 1 px × 1 px × 1
(2.1)
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where s0C is the true noiseless complex-valued vector of spatial frequencies and εC is the vector of complex-valued

measurement error. The statistical properties of these measurements will be discussed in the next section. The

measured complex valued signal can be represented as

sC = (s0R + is0I) + (εR + iεI)

= (s0R + εR) + i(s0I + εI)

where i is the imaginary unit while s0R, s0I , εR and εI are real and imaginary vector valued parts of the true signal

and measurement noise. Also let ΩCx be a px × px complex-valued matrix such as a Fourier matrix such that

ΩCx = ΩRx + i ΩIx

px × px px × px px × px

where ΩRx and ΩIx are real and imaginary matrix valued parts. Then, the px × 1 complex-valued (inverse) Fourier

transformation ρC of sC can be written (Strang, 1988) as the pre multiplication by the complex-valued Fourier matrix

as
ρC = ΩCx ∗ sC

= (ΩRx + iΩIx) ∗ [(s0R + εR) + i(s0I + εI)]

= [ΩRx(s0R + εR) − ΩIx(s0I + εI)] + i[ΩRx(s0I + εI) + ΩIx(s0R + εR)]

= [(ΩRxs0R − ΩIxs0I) + (ΩRxεRx − ΩIxεI)] + i[(ΩRxs0I + ΩIxs0R) + (ΩRxεI + ΩIxεR)]

= (ρ0R + ηR) + i(ρ0I + ηI)

= ρR + iρI

where ρ0R, ρ0I , ηR, and ηI are real and imaginary vector valued parts of the Fourier transformed true signal (image)

and transformed measurement noise. If ΩCx were a Fourier matrix, it is [ΩCx]jk = κ
(
ωjk

)
where κ = 1 and

ω = exp[−i2π(j − 1)(k − 1)/px] for the forward transformation while κ = 1/px and ω = exp[+i2π(j − 1)(k − 1)/px]

for the inverse transformation, where j, k = 1, ..., px.

This pre multiplication of a complex-valued vector by a complex-valued matrix can be equivalently represented

with the 2px dimensional real-valued isomorphism

ρ = Ωx ∗ s⎛
⎝ ρR

ρI

⎞
⎠ =

⎛
⎝ ΩRx −ΩIx

ΩIx ΩRx

⎞
⎠

⎛
⎝ s0R + εR

s0I + εI

⎞
⎠ .

(2.2)

2.2 Two Dimensions

In a two dimensional echo planar MRI, two dimensional complex-valued k-space measurements are taken in time

but correspond to specific spatial frequencies on a (kx, ky) grid. In a standard echo planar imaging (EPI) experiment,

the measurements are taken in a “zig-zag” pattern. For example, with positive phase encode steps, the pattern starts

at the bottom left of the grid with negative (kx, ky) values and moves from left to right, then right to left and so

on, while going from bottom to top, as in Fig. 4a, which exemplifies an eight line image. A modification of this

standard EPI k-space trajectory is to repeat the center line in the vertical ky direction (pictorially separated) then
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continue in a zig-zag pattern, as in Fig. 4b, which exemplifies an eight line image. This repeated central ky line

from the omission of a phase encode step allows for an adjustment to be performed to compensate for misalignment

between odd and even lines of k-space that may cause Nyquist ghosting in the phase encode direction (Jesmanowicz

et al., 1993; Jesmanowicz et al., 1995), which is vertical here. The left-right direction is called the frequency encode

direction. After this correction, the second or repeated line through the center of k-space is discarded.

Figure 4: 2D EPI k-space trajectories.
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(a) Standard EPI
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(b) Navigator Echo EPI

Let SC be a py × px complex-valued matrix of two dimensional image spatial frequencies such that

SC = S0C + EC

py × px py × px py × px

(2.3)

where S0C is the true noiseless complex-valued matrix of spatial frequencies and EC is the matrix of complex-valued

measurement error. The statistical properties of these measurements will be discussed in the next section.

The measured complex valued signal can be represented as

SC = (S0R + iS0I) + (ER + iEI)

= (S0R + ER) + i(S0I + EI)

where i is the imaginary unit while S0R, S0I , ER and EI are real and imaginary matrix valued parts of the true

signal and measurement noise.

Let ΩCx and ΩCy be px × px and py × py complex-valued Fourier matrices such that

ΩCy = ΩRy + i ΩIy and ΩCx = ΩRx + i ΩIx

py × py py × py py × py px × px px × px px × px

where ΩRy and ΩRx are real, and ΩIy ΩIx are imaginary matrix valued parts.
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Then, the py × px complex-valued (inverse) Fourier transformation RC of SC can be written as

RC = ΩCy SC Ω′
Cx

= (ΩRy + iΩIy) [(S0R +ER) + i(S0I +EI)] (Ω′
Rx + iΩ′

Ix)

= (ΩRy + iΩIy) {[(S0R + ER)Ω′
Rx − (S0I + EI)Ω′

Ix] + i[(S0R +ER)Ω′
Ix + (S0I + EI)Ω′

Rx]}
= (R0R +NR) + i(R0I +NI)

= RR + iRI

where
R0R = (ΩRyS0RΩ′

Rx − ΩRyS0IΩ′
Ix − ΩIyS0RΩ′

Ix − ΩIyS0IΩ′
Rx)

NR = (ΩRyERΩ′
Rx − ΩRyEIΩ′

Ix − ΩIyERΩ′
Ix − ΩIyEIΩ′

Rx)

R0I = (ΩRyS0RΩ′
Ix + ΩRyS0IΩ′

Rx + ΩIyS0RΩ′
Rx − ΩIyS0IΩ′

Ix)

NI = (ΩRyERΩ′
Ix + ΩRyEIΩ′

Rx + ΩIyERΩ′
Rx − ΩIyEIΩ′

Ix)

are real and imaginary matrix valued parts of the Fourier transformed true signal (image) and measurement noise.

Each row in the curled bracket part of the expression for RC is a one dimensional complex-valued transformation

SCΩ′
Cx =

⎛
⎜⎜⎜⎝

(ΩCxsC1)′

...

(ΩCxsCpy)′

⎞
⎟⎟⎟⎠ (2.4)

as in the previous subsection where s′Cj represents the jth row in SC that is px dimensional, j = 1, ..., py. The

complex matrices ΩCy and ΩCx can be Fourier matrices. This pre and post multiplication of a complex-valued

matrix by complex-valued matrices could in principle be equivalently represented with a real-valued isomorphism

but this is difficult to work with.

3 Statistics

As described in the previous section, data collected from a scientific experiment is never precisely known and

thus contains both true signal and measurement error. Scientific measurement error is quantified with statistical

distributions and inferences drawn. In most instances, real-valued measurements are taken and real-valued statis-

tical distributions utilized. However, in MRI complex-valued measurements are taken and thus a complex-valued

statistical distribution needs to be utilized. The data can be represented using a real-valued isomorphism and a

multivariate normal distribution (Rowe, 2003). The real-valued isomorphism used here is very general and within

this framework contains the particular isomorphism used to represent the complex-valued multivariate normal dis-

tribution (Wooding, 1956; Anderson et al., 1995) as briefly described in Appendix A . The transformation from

complex-valued spatial frequency space to image space modifies properties of both the true signal and the measure-

ment noise. The relationship between correlated complex-valued observations made in spatial frequency space and

the modified correlation between Fourier transformed or reconstructed complex-valued observations in image space

is examined.
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3.1 One Dimension

Using the real-valued isomorphism in Eqn. 2.2, let the 2px dimensional vector s = (s′R, s
′
I)

′ be multivariate

normally distributed (Rowe, 2003) with mean and covariance matrix

s0 =

⎛
⎝ s0R

s0I

⎞
⎠ and Λ =

⎛
⎝ Λ11 Λ12

Λ′
12 Λ22

⎞
⎠

Complex multivariate normal structure occurs when Λ11 = Λ22 = Ψ, −Λ12 = Υ, and Λ′
12 = Υ. This isomorphism

is more general and less restrictive than multivariate complex normal structure. By carrying out a multivariate

transformation of variable with the real-valued isomorphism from s to ρ through ρ = Ωxs, the statistical distribution

of ρ is also multivariate normally distributed but with mean ρ0 given by
⎛
⎝ ρ0R

ρ0I

⎞
⎠ =

⎛
⎝ ΩRx −ΩIx

ΩIx ΩRx

⎞
⎠

⎛
⎝ s0R

s0I

⎞
⎠

=

⎛
⎝ ΩRxs0R − ΩIxs0I

ΩRxs0I + ΩIxs0R

⎞
⎠

(3.1)

and covariance matrix ∆ = ΩxΛΩ′
x given by

∆ =

⎛
⎝ ΩRx −ΩIx

ΩIx ΩRx

⎞
⎠

⎛
⎝ Λ11 Λ12

Λ′
12 Λ22

⎞
⎠

⎛
⎝ Ω′

Rx Ω′
Ix

−Ω′
Ix Ω′

Rx

⎞
⎠

∆11 = ΩRxΛ11Ω′
Rx − ΩIxΛ′

12Ω
′
Rx + ΩRx(−Λ12)Ω′

Ix + ΩIxΛ22Ω′
Ix

∆22 = ΩIxΛ11Ω′
Ix + ΩRxΛ′

12Ω
′
Ix − ΩIx(−Λ12)Ω′

Rx + ΩRxΛ22Ω′
Rx

∆12 = ΩRxΛ11Ω′
Ix − ΩIxΛ′

12Ω′
Ix − ΩRx(−Λ12)Ω′

Rx − ΩIxΛ22Ω′
Rx

∆21 = ∆′
12

(3.2)

where Ωx is of full rank if it is a Fourier matrix. Again, this isomorphism is more general and less restrictive than

multivariate complex normal structure. In the multivariate complex normal case where Λ11 = Λ22 = Ψ, −Λ12 = Υ,

and Λ′
12 = Υ,

∆11 = ΩRxΨΩ′
Rx − ΩIxΥΩ′

Rx + ΩRxΥΩ′
Ix + ΩIxΨΩ′

Ix

∆12 = ΩRxΨΩ′
Ix − ΩIxΥΩ′

Ix − ΩRxΥΩ′
Rx − ΩIxΨΩ′

Rx

∆21 = −∆12

∆22 = ∆11

(3.3)

where Υ is a skew symmetric matrix, Υ′ = −Υ.

It can readily be seen that if the measurement process that generates the data produces independent real and

imaginary channels, Λ12 = Λ′
12 = 0 but correlated within the real and imaginary channels, then after transformation

the real and imaginary channels are correlated both between and within. It should be noted that if Υ = 0 and

Ψ = ψ2Ipx , then ∆ = δ2I2 ⊗ Ipx where δ = ψ2/px for the inverse transformation and δ = ψ2px for the forward

transformation.

8



The above specific multivariate complex normal structure could alternatively be developed utilizing the com-

plex multivariate normal distribution as described in Appendix A. A property of the complex multivariate nor-

mal distribution is that if sC ∼ NC (s0C ,ΛC), then ρC = ΩCxsC is also complex normal distributed, ρC ∼
NC

(
ΩCxs0C ,ΩCxΛCΩH

Cx

)
where ΛC = Ψ + iΥ.

After image reconstruction, the usual procedure is to convert from real and imaginary images to magnitude and

phase images. The phase is generally discarded in fMRI and magnitude-only time course data is analyzed. The

conversion from real and imaginary images to magnitude and phase images is a nonlinear transformation and thus

the joint distribution of the magnitude image observations is not straight forward. On an individual basis, the

magnitude quantity in voxel j in each magnitude image is

mj =
√

(ρ0Rj + ηRj)2 + (ρ0Ij + ηIj)2

and the vector m = (m1, ..., mpx)′. It is well known (Rice, 1944; Gudbjartsson and Patz, 1995; Rowe and Logan, 2004)

that mj is Ricean distributed with parameters aj =
√
ρ2
0Rj + ρ2

0Ij and ∆jj as previously defined. The population

correlation between Ricean distributed magnitude image observations will be examined through simulation in the

next Section.

3.2 Two Dimensions

Similar to the one dimensional image case, let the real part stacked upon the imaginary part of each row of SC ,

sCj be denoted by sj = (s′Rj , s
′
Ij)

′ and be normally distributed with mean s0j = (s′0Rj , s
′
0Ij)

′ and covariance matrix

Λj. Define a real-valued isomorphism for each row of the complex-valued matrix to be

S =

⎛
⎜⎜⎜⎝

s′1
...

s′py

⎞
⎟⎟⎟⎠ .

Each row of S can be post multiplied by Ω′
x and the resulting row is the transpose of the result for the one dimensional

case given above. Reform a complex matrix then another real-valued isomorphism for the columns so that each of

the resulting columns are pre multiplied by Ωy to produce R.

As previously described, the observations can be represented with a real-valued isomorphism. Note that if each

of the rows j of the two dimensional image are specified to be uncorrelated and normally distributed with mean s0j

and covariance matrix Λj , then the vector formed by stacking the rows is

⎛
⎜⎜⎜⎝

s1
...

spy

⎞
⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

s01

...

s0py

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

Λ1 0
. . .

0 Λpy

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
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the partial transformation along the x dimension can be written as
⎛
⎜⎜⎜⎝

Q′
R1, Q

′
I1

...

Q′
Rpy

, Q′
Ipy

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

s′R1 , s
′
I1

...

s′Rpy
, s′Ipy

⎞
⎟⎟⎟⎠

⎛
⎝ Ω′

Rx Ω′
Ix

−Ω′
Ix Ω′

Rx

⎞
⎠

then this is ⎛
⎜⎜⎜⎝

Q1

...

Qpy

⎞
⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

Q01

...

Q0py

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

∆1 0
. . .

0 ∆py

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

where Q1 = (Q′
R1, QI1)′ = s1Ω′

x, Q01 = (Q′
0R1, Q0I1)′ = s01Ω′

x, and ∆j = ΩxΛjΩ′
x. Then the isomorphism

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R′
R1

...

R′
Rpy

R′
I1

...

R′
Ipy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ ΩRy −ΩIy

ΩIy ΩRy

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q′
R1

...

Q′
Rpy

Q′
I1

...

Q′
Ipy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QR1

...

QRpy

QI1

...

QIpy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0R1

...

Q0Rpy

Q0I1

...

Q0Ipy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆1RR 0 ∆1RI 0
. . . . . .

0 ∆pyRR 0 ∆pyRI

∆1IR 0 ∆1II 0
. . . . . .

0 ∆pyIR 0 ∆pyII

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with the matrix ∆j partitioned into four blocks the upper left denoted RR the upper right denoted RI, the lower

left IR and the lower right II. One could write down the pattern for the covariance matrix for the transformed data.

In terms of complex-valued matrices, the mean of the transformed variables can be written as

R0 = ΩyS0CΩ′
x

= (ΩyR + iΩyI)(S0R + iS0I)(Ω′
xR + iΩ′

xI )

= R0R + iR0I

as previously defined but the covariance of the transformed observations is nontrivial. The correlation structure of

the two dimensional transformed data will be examined through rigorous simulation.

Again, after image reconstruction, the usual procedure is to convert from real and imaginary images to magnitude

and phase images. The phase is generally discarded in fMRI and magnitude-only time course data is analyzed. The

conversion from real and imaginary images to magnitude and phase images is a nonlinear transformation and thus
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the joint distribution of the magnitude-only image quantities is not straight forward. On an individual basis, each

magnitude image observation is

Mjk =
√

(R0Rjk +NRjk)2 + (R0Ijk +NIjk)2

and the matrix M with j, kth element Mjk formed. It is well known (Rice, 1944; Gudbjartsson and Patz, 1995;

Rowe and Logan, 2004) that Mjk is Ricean distributed with parameter ajk =
√
R2

0Rjk +R2
0Ijk as previously defined.

The population correlation between Ricean distributed magnitude-only image quantities will be examined through

simulation in the next Section.

4 Simulated Data

To illustrate the statistical properties of the transformed data, simulations were performed under known condi-

tions. This will precisely characterize the distribution of the transformed observations. To illustrate the methods,

simulations were carried out of for the same dimensions for both the one and two dimensional image cases. All

computations for both simulated and real data utilized Matlab (The Mathworks, Natick, MA, USA).

4.1 One Dimension

Although explicit analytical expressions exist for the mean and variance of the complex-valued transformed data

given the mean and variance of the underlying true population distribution, simulations were carried out to verify

the analytic results and obtain additional magnitude-only results. Data was generated to mimic a one dimensional

magnetic resonance (MR) imaging experiment. Although this simulation is a mathematical ideal and possibly

unrealistic, its results are useful in understanding the properties of the described methodology. Random complex-

valued error vectors of dimension px were generated in the form of the real-valued isomorphism. Random error vectors

of dimension 2px for the px real observations stacked upon the px imaginary observations denoted by s1 , ..., sL were

generated from a normal distribution with mean s0 and covariance I2 × Ψ. Without loss of generality, s0 = 0 Ψ was

taken to be a unit variance AR(1) correlation matrix with (i, j)th element 
|i−j| where 
 = 0.75. The number of

randomly generated vectors was selected to be L = 107.

Values of px were chosen to be 8, 32, 64, and 96. The corresponding correlation matrices from the L randomly

generated vectors were computed as displayed in Figs. 5a, b and 6a, b. These correlation matrices matched the

theoretical population correlation matrices from which they were generated. Note that the real and imaginary parts

of the randomly generated data are statistically independent as seen in Figs. 5a, b and 6a, b. Further, each random

vector for every px value was pre multiplied by the appropriate inverse Fourier transform matrix Ω given in Eqn. 2.2.

The correlation matrices of the transformed vectors were computed as displayed in Figs. 5c, d and 6c, d. These

correlation matrices matched the theoretical population correlation matrices from Eqn. 3.2. Note that the real and

imaginary parts of the transformed data are correlated as seen in Figs. 5c, d and 6c, d. Further, since an analytic

expression for the theoretical covariance or correlation matrix for magnitude-only quantities can not be found, the

11



L vectors containing real and imaginary observations of dimension 2px were converted to L vectors of dimension

px containing magnitude-only quantities. The correlation matrices of the magnitude-only vectors was computed as

displayed in Figs. 5e, f and 6e, f. Note that the magnitude-only quantities are nearly uncorrelated as seen in Figs. 5e

and f while uncorrelated as seen in Figs. 6e and f.

It should also be noted that the simulated data was generated with population multivariate complex covariance

structure and thus the transformed data also has complex multivariate normal covariance structure.

4.2 Two Dimensions

As previously noted, a simple closed form analytic expression for the correlation of real and imaginary parts

of a transformed two dimensional image is not known. Data was generated to mimic a two dimensional magnetic

resonance (MR) imaging experiment. Random complex-valued error matrices of dimension py×px were generated and

denoted by S1, ..., SL. The real and imaginary parts of each row along the EPI trajectory of Fig. 4b were generated

from a normal distribution with mean S0 and covariance I2 ⊗ Ψ. Voxels were ordered and oriented consistent with

the path along a row either from left to right or right to left. Without loss of generality, S0 = 0 and Ψ was taken to

be the same as in the one dimensional case above. The number of randomly generated matrices was selected to be

L = 107.

Values of py = px were chosen to be 8 and 32. Results for 64 and 96 are not included for brevity and low

information content but their pattern can be seen by generalizing the results of 8 and 32. Voxels are ordered in two

ways when computing the correlation matrices. First following the zig-zag EPI path as in Fig. 4b and second by

simply vectorizing (VEC) the voxels or ordering the voxels from top to bottom from left to right. In the VEC ordering

of voxels, the correlation is spread out and the pattern lost. The sample correlation matrix from a finite number of

observations is much noisier and when the VEC ordering is followed the correlations are more difficult to discren. The

corresponding correlation matrices from the L randomly generated matrices were computed as displayed in Figs. 7a,b

and 8a,b for the EPI and VEC paths. These correlation matrices matched the theoretical population correlation

matrices from which they were generated. Note that the real and imaginary parts of the randomly generated data

are statistically independent as seen in Figs. 7a,b and 8a,b. Further, each random complex-valued matrix for every

py = px value was pre and post multiplied by the appropriate inverse Fourier transform matrices ΩCy and Ω′
Cx given

in Eqn. 2.2. The correlation matrices of the transformed data was computed as displayed in Figs. 7c,d and 8c,d.

Since a simple closed form analytic expression for the theoretical covariance or correlation matrix for the transformed

data matrices can not be simply found, the L data matrices containing pypx real and pypx imaginary observations

were converted to L vectors of dimension 2pypx. This was done for both of the trajectory orderings of voxels. Note

that the real and imaginary parts of the transformed data are correlated as seen in Figs. 7c,d and 8c,d. Further,

since a simple closed form analytic expression for the theoretical covariance or correlation matrix for magnitude-only

quantities can not be found, the L matrices of dimension py = px containing real and imaginary observations were

converted to L matrices of dimension py × px containing magnitude-only quantities. The correlation matrices of

the magnitude-only data matrices was computed as displayed in Figs. 7e, f and 8e,f. Note that the magnitude-only

12



quantities are nearly uncorrelated as seen in Figs. 7e,f and 8g,h. Further note that the VEC ordering of the voxels

spreads out the correlated voxels for the population correlation matrices as pictorially presented and thus in larger

dimensions hides the pattern which may be further obfuscated in noisy sample correlation images.

Again, it should also be noted that the simulated data was generated with population multivariate complex

covariance structure and thus the transformed data also has complex multivariate normal covariance structure.
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Figure 5: Correlation maps 
 = 0.75, L = 107.
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Figure 6: Correlation maps 
 = 0.75, L = 107.
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Figure 7: Correlation maps py = px = 8, 
 = 0.75, L = 107.
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Figure 8: Correlation maps py = px = 32, 
 = 0.75, L = 107.
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5 Experimental Data

To illustrate the properties of transformed data from actual biological experiments under known conditions without

physiologically induced correlations, phantom data was acquired. An fMRI experiment was performed on a phantom

containing aqueous cupric sulfate (CuSO4) and a plastic grid. Scanning used a Bruker Medspec 3T/60cm scanner,

where 10 axial slices of 96×96 were acquired with a field of view of 19.2cm. The dimension of each voxel was 2×2×2

in mm. A single shot full k-space gradient echo EPI pulse sequences with FA= 90◦, TE= 80ms, TR= 2000ms, and

330 time points was used. Within each of the acquired slices, data collection followed the EPI trajectory in Fig. 4b

which started at the at the bottom left, then to the right, and up one line with a positive phase encode step then

left and up with another phase encode step. This process was repeated until the Cartesian grid was completed.

A repetition of the central ky line or navigator echo of the center line as in Fig. 4b was performed by omitting a

phase encode step. This allows for an adjustment to be performed to compensate for misalignment between odd

and even lines of k-space that may cause Nyquist ghosting in the phase encode direction (Jesmanowicz et al., 1993;

Jesmanowicz et al., 1995) which is vertical here. In the turn around of moving from left to right (or right to left), 32

turn around points were acquired and discarded after alignment.

A single axial slice is examined here, and the data reduced to n = 256 time points by omitting the first ten time

points which allows for signal equilibration and the remaining points. This was performed to reduce the number of

time points to a typical value so that these results may be translated to other experiments.

5.1 One Dimension

To demonstrate the aforementioned methodology in a single dimension, the center of the central line of k-space

was utilized with voxels ordered from left to right of varying dimension px. Values of px were chosen to be 8, 32,

64, and 96. Since observed correlation matrices are noisier than population correlation matrices derived by a very

large number of simulations, the neutral gray color band around zero was expanded to ±0.05. The corresponding

sample correlation matrices from the n = 256 acquired vectors were computed as displayed in Figs. 9a, b and 10a, b.

Note that the real and imaginary parts of the acquired data are correlated as seen in Figs. 9a,b and 10a,b. Further,

each acquired vector for every px was pre multiplied by the appropriate inverse Fourier transform matrix Ωx given

in Eqn. 2.2. The sample correlation matrices of the transformed vectors was computed as displayed in Figs. 9c, d

and 10c, d. Note that the real and imaginary parts of the transformed data are “strongly” correlated as seen in

Figs. 9c,d and 10c, d. Further, the n vectors containing real and imaginary observations of dimension 2px were

converted to n vectors of dimension px containing magnitude-only quantities. The sample correlation matrices of the

magnitude-only vectors was computed as displayed in Figs. 9e,f and 10e,f. Note that the magnitude-only quantities

are also “strongly” correlated as seen in Figs. 9e,f and Figs. 10e,f.

It should also be noted that the experimental data does not have multivariate complex covariance structure and

thus the transformed data also does not have complex multivariate normal covariance structure.
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5.2 Two Dimensions

To further describe the above methodology, the central square of k-space of dimension py × px was utilized with

voxels ordered and oriented as in the EPI navigator echo trajectory. Values of py = px were chosen to be 8, 16,

32, and 64. The 96 dimensional results are not included as they are extremely difficult to obtain due to memory

limitations and their information content is predicted to be low. Since observed correlation matrices are noisier than

population correlation matrices derived by a very large number of simulations, the neutral gray color band around

zero was expanded to ±0.05. The corresponding sample correlation matrices from the n acquired data matrices

were computed as displayed in Figs. 11a,b - 13a,b and 15a,b for the EPI and VEC paths. Note that the real and

imaginary parts of the observed data are statistically correlated as seen in Figs. 11a,b - 13a,b and 15a,b. Further,

each acquired complex-valued matrix for every py = px was pre and post multiplied by the appropriate inverse

Fourier transform matrices ΩCy and Ω′
Cx given in Eqn. 2.2. The n transformed data matrices containing pypx real

and pypx imaginary observations were converted to n vectors of dimension 2pypx. The sample correlation matrices

of the transformed data was computed as displayed in Figs. 11c,d - 12c,d, 14a - f and 16a - f. This was done for both

of the trajectory orderings of voxels. Note that the real and imaginary parts of the transformed data are correlated

as seen in Figs. 11c,d - 12c,d, 14a - f and 16a - f. The n matrices of dimension py = px containing real and imaginary

observations were converted to n matrices of dimension py × px containing magnitude-only quantities. The sample

correlation matrices of the magnitude-only data matrices was computed as displayed in Figs. 11e,f, 12e,f and 14g,h

and 16g,h. Note that the magnitude-only quantities are correlated as seen in Figs. 11e,f, 12e,f and 14g,h and 16g,h.

Again, it should also be noted that the experimental data does not have multivariate complex covariance structure

and thus the transformed data also does not have complex multivariate normal covariance structure.
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Figure 9: Correlation maps 
 = Real, n = 256.
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Figure 10: Correlation maps 
 = Real, n = 256.
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Figure 11: Correlation maps py = px = 8 
 = Real, n = 256.
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Figure 12: Correlation maps py = px = 16 
 = Real, n = 256.
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Figure 13: Correlation maps py = px = 32 
 = Real, n = 256.
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Figure 14: Correlation maps py = px = 32 
 = Real, n = 256.
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Figure 15: Correlation maps py = px = 64 
 = Real, n = 256.
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Figure 16: Correlation maps py = px = 64 
 = Real, n = 256.
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6 Conclusions

This paper examined the resulting correlation structure between voxels when Fourier reconstructing spatially cor-

related k-space observations. Spatially correlated voxels result from spatially correlated k-space observations. These

correlation results may have implications for fMRI. In particular, temporally autocorrelated k-space measurements

produce spatially correlated real and imaginary components of voxels along with the magnitude. This may have

specific implications for functional connectivity. Further, the measurement process as implemented upon an aqueous

phantom produced correlated voxels. The baseline spatial correlation needs to be considered and accounted for when

making statements regarding connectivity between voxels in fMRI.

It is important to understand that the current fMRI noise process is not well understood for inanimate objects.

Making statistical inferences, interpreting analysis results, and drawing conclusions should be drawn with the current

research in mind.
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A Complex Normal Distribution

A complex-valued normal distribution was described by Wooding (1956) and further developments collected with

additional applications by Anderson et al. (1995). Here the complex normal distribution as described by Anderson

et al. (1995) is briefly summarized. However, this description departs from that of Anderson et al. (1995) in that

the variance of the standard complex scalar variates is not renormalized to unity or equivalently that the variance

of the standard real and imaginary variate parts of the scalar variates is not normalized to one-half.

Let zC = zR + izI be a complex-valued scalar random variate where zR and zI are the real and imaginary variate

parts of zC . The complex variate zC can be equivalently represented by the real-valued isomorphism z = (zR, zI)′.

Let zR and zI be standard real normal scalar variates with mean zero and unit variance. Then utilizing the real

isomorphism, z is bivariate normal with zero mean vector and identity two dimensional covariance matrix. The

bivariate probability distribution function for real z is

p(z) = (2π)−
2
2 |I2|− 1

2 e−
1
2 z′(I2)

−1z

where “ ′ ” denotes transposition and written z ∼ N(0, I2). Returning to the complex representation, the probability

distribution function for zC is

p(zC) = (2π)−
2
2 e−

1
2 z∗

CzC

where “ ∗ ” denotes conjugation and written zC ∼ NC (0, 1). A one-to-one correspondence between the probability

function of the isomorphism z and the probability distribution function of zC can readily be seen and that z∗CzC ≡ z′z

where “ ≡ ” denotes an equivalent relationship.

The nonstandardized complex scalar normal variate xC can be found by pre multiplying zC by aC = aR + iaI

and adding bC = bR + ibI . This transformation yields

xC = (aR + iaI )(zR + izI ) + (bR + ibI)

= (aRzR − aIzI + bR) + i(aRzI + aIzR + bI)

= xR + ixI .

This transformation of the complex normal scalar variate can be represented in terms of the real isomorphism

x = az + b as ⎛
⎝ xR

xI

⎞
⎠ =

⎛
⎝ aR −aI

aI aR

⎞
⎠

⎛
⎝ zR

zI

⎞
⎠ +

⎛
⎝ bR

bI

⎞
⎠

=

⎛
⎝ aRzR − aIzI + bR

aRzI + aIzR + bI

⎞
⎠ (A.1)

with mean µ = 0 + b

µ =

⎛
⎝ 0

0

⎞
⎠ +

⎛
⎝ bR

bI

⎞
⎠ (A.2)
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and covariance matrix

aI2a
′ =

⎛
⎝ aR −aI

aI aR

⎞
⎠

⎛
⎝ 1 0

0 1

⎞
⎠

⎛
⎝ aR aI

−aI aR

⎞
⎠

=

⎛
⎝ a2

R + a2
I 0

0 a2
R + a2

I

⎞
⎠

(A.3)

where the variance is defined to be σ2 = a2
R + a2

I . The probability distribution function for this bivariate real

isomorphism is

p(x) = (2π)−
2
2 |σ2I2|−1

2 e−
1
2 (x−µ)′(σ2I2)

−1(x−µ) .

Returning to the complex representation, the probability distribution function for nonstandard complex scalar normal

variate xC is

p(xC) = (2πσ2)−
2
2 e−

1
2 (xC−µC )∗(σ2)−1 1

2 (xC−µC)

and written xC ∼ NC(µC , σ
2). Again, a one-to-one correspondence between the probability function of the isomor-

phism x and the probability distribution function of xC can readily be seen and that x∗CxC ≡ x′x.

A multivariate or vector complex normal distribution can also be derived. Consider a collection of complex scalar

normal variates xC1, ..., xCp or the equivalent real isomorphism x1, ..., xp. Collect the real variates into a p×2 matrix

X = (x1, ..., xp)′ and form the 2p× 1 vector x = vec(X) where vec(·) denotes the vectorization operator that stacks

the columns of its matrix argument. The probability distribution function of x is

p(x) = (2π)−
2p
2 |(σ2I2) ⊗ Ip|− 1

2 e−
1
2 (x−µ)′[(σ2I2)⊗Ip]−1(x−µ) .

where ⊗ denotes the Kronecker product and µ = vec(M) with M = (µ1, ..., µp)′.

The complex multivariate or vector normal distribution with correlation both within and between the real and

imaginary parts can be derived via a transformation of variable. The nonstandardized complex p-dimensional mul-

tivariate normal variate yC can be found by pre multiplying xC by AC = AR + iAI and adding dC = dR + idI . This

transformation yields

yC = (AR + iAI)(xR + ixI) + (dR + idI)

= (ARxR − AIxI + dR) + i(ARxI +AIxR + dI)

= yR + iyI .

This transformation of the complex normal vector variate can be represented in terms of the real isomorphism

y = Ax+ d as
⎛
⎝ yR

yI

⎞
⎠ =

⎛
⎝ AR −AI

AI AR

⎞
⎠

⎛
⎝ xR

xI

⎞
⎠ +

⎛
⎝ dR

dI

⎞
⎠

=

⎛
⎝ ARxR −AIxI + dR

ARxI + AIxR + dI

⎞
⎠ (A.4)
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with mean generically denoted as µ = b+ d and covariance matrix ∆ = A(σ2Ip)A′ given by

∆ =

⎛
⎝ AR −AI

AI AR

⎞
⎠

⎛
⎝ σ2Ip 0

0 σ2Ip

⎞
⎠

⎛
⎝ A′

R A′
I

−A′
I A′

R

⎞
⎠

=

⎛
⎝ AR(σ2Ip)A′

R + AI(σ2Ip)A′
I −(AI (σ2Ip)A′

R − AR(σ2Ip)A′
I )

AI(σ2Ip)A′
R − AR(σ2Ip)A′

I AR(σ2Ip)A′
R +AI(σ2Ip)A′

I

⎞
⎠

=

⎛
⎝ Σ −Υ

Υ Σ

⎞
⎠ .

(A.5)

The probability distribution function for this multivariate real isomorphism is

p(y) = (2π)−
2
2 |∆|−1

2 e−
1
2 (y−µ)′∆−1(y−µ) .

Returning to the complex representation, the probability distribution function for nonstandard complex scalar normal

variate yC is

p(yC ) = (2π)−
2
2 |∆C|− 1

2 e−
1
2 (yC−µC )H∆−1

C (yC−µC )

where “ H ” denotes the Hermitian or conjugate transpose, and is written yC ∼ NC(µC ,∆C). Again, a one-to-one

correspondence between the probability function of the isomorphism y and the probability distribution function of

yC can readily be seen and that (yC − µC)H∆−1
C (yC − µC) ≡ (y − µ)′∆−1(y − µ) where ∆C = Σ + iΥ. To see this

correspondence, note that

∆−1 =

⎛
⎝ P Q

−Q P

⎞
⎠

where P = (Σ + ΥΣ−1Υ)−1 and Q = Σ−1Υ(Σ + ΥΣ−1Υ)−1 along with ∆−1
C = P − iQ.

The complex matrix normal distribution of dimension n × p with correlation both within and between the real

and imaginary parts can be derived via a transformation of variable. A set of p-dimensional complex-valued normally

distributed random vectors yC1, ..., yCq that are mutually independent such that yCj ∼ NC (µCj ,∆C), for j = 1, ..., q

can be collected into a matrix YC = (yC1, ..., yCq)H . Then, YC , has a complex matrix normal distribution with mean

and variance given by

E(YC) = (µC1, ..., µCq)H = MC

var(YC) = Iq ⊗ ∆C .

This is denoted, YC ∼ NC (MC , Iq ⊗ ∆C). The probability distribution function of YC is

p(YC) = (2π)−
2pq
2 |∆C|−qe−tr[(YC−MC)H (YC−MC)∆−1

C ]

where tr denotes the trace operator.

This can be generalized to allow correlation between the rows of YC by the transformation of variable U = DCYC
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to form

UC = (DR + iDI )(YR + iYI )

= (DRYR −DIYI) + i(DRYI +DIYR)

= UR + iUI .

then the mean and variance given by

E(UC) = DCMC

var(UC ) = DCD
H
C ⊗ ∆C .

This is denoted, UC ∼ NC

(
DCMC , DCD

H
C ⊗ ∆C

)
. The probability distribution function of UC is

p(UC) = (2π)−
2pq
2 |∆C|−q|DCD

H
C |−pe−tr[(DC DH

C )(YC−MC)H(YC−MC)∆−1
C ]
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