
A SAS MACRO FOR THE ADDITIVE HAZARDS REGRESSION MODEL

Alicia M. Howell and John P. Klein, Aurora Health Care, Medical College of Wisconsin
Alicia M. Howell, Aurora Health Care, 3031 West Montana Street, PO Box 343910, Milwaukee, WI 53234-3910

KEY WORDS:  Survival analysis

Regression models for survival data have traditionally
been based on a proportional hazards model.  The effect
of the covariates on survival is to act multiplicatively
on some unknown baseline hazard rate which makes it
difficult to model covariate effects that change over time.
An alternate model is AalenÕs (1980) additive model in
which the covariates act in an additive manner on an
unknown baseline hazard rate.  This model allows for
covariate effects to vary over time.  AalenÕs additive
model is not yet widely used.  One reason for this is
the model is not available in any commonly used
computer packages, such as SAS, SPSS, or BMDP.
Presented here is a SAS macro that performs the
additive hazards regression.  Estimates of the
cumulative covariate function and the respective
standard deviations are computed.  The macro provides
graphical summaries of the covariate effects and tests the
hypothesis of no covariate effect, as well as of contrasts
of parameter vectors.  An example data set is used to
illustrate the macro.  

1. Introduction

Survival data is time-to-event data, such as time to
death, appearance of a tumor, or recurrence of a disease.
Regression models for survival data have traditionally
been based on a proportional hazards model, the most
common being the Cox model (Cox 1972).  The
survival times of each individual is assumed to follow
its own hazard function, hi(t).  The Cox proportional
hazards model is given by:
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where ho is the baseline hazard function, Zi(t) is a vector
of measured explanatory variables for the ith individual
at time t, and b is a vector of unknown regression
parameters which are assumed to be the same for all
individuals.  The data available in regression problems
for right-censored time data are independent
observations on the triple (X, d, Z), where X is the
minimum of the death and censoring time pair (T, U),  
d=I{T£U} is the indicator of whether or not a death has
been observed (censoring indicator), and Z = (Z1, ....,
Zp)¢ is a p-dimensional column vector of covariates.
The vector Z may be a function of t, but the only
requirement is that Z(t) can be determined from the
observations up to time t.  

One alternate model is AalenÕs (1980) additive hazards
model.  This model assumes that the covariates act in
an additive manner on an unknown baseline hazard rate.
The unknown risk coefficients are allowed to be
functions of time so that the effect of a covariate may
vary over time.  For example, in studies of excess risk
where the background risk and excess risk typically can
have very different temporal forms, additive hazard
models seem to be biologically more plausible than
proportional hazards models (Buckley 1984).  

Even though there are many advantages using the
additive hazards model, it is not widely used.  One
reason for this is the model is not available in any
commonly used statistical packages, such as SAS,
SPSS, or BMDP.   This is the inspiration for writing a
SAS macro that will perform the additive hazards
regression.   

Section 2  outlines the additive hazards model,
including estimation of the cumulative regression
functions, confidence intervals, and testing.  Section 3
describes the SAS macro and how it can be
implemented by other users.  Section 4 gives several
examples to illustrate the macro, using data from
Kardaun (1983) who reported data on 90 males
diagnosed with cancer of the larynx.  The conclusion
summarizes the additive hazards model and the SAS
macro written.  

2. AalenÕs Additive Hazards Regression Model

Applications of AalenÕs additive model have been given
by Mau (1986, 1988) and by Anderson and Vaeth
(1989).  Further theoretical analysis was made by
McKeague (1986), McKeague and Utikal (1988) and
Huffer and McKeague (1987, 1991).

The data required consists of a sample (ti, d i, Zi),
i=1,.., n where t i is the time on study for the ith
individual, di is the censoring indicator (1 if event, 0
otherwise), and Zi(t)={Zi1(t), ...., Zip(t)} is a p-vector of
covariates.  Although the covariates may be time-
dependent, the following macro will not work for time-
dependent covariates.  Therefore, we will only look at
the fixed covariate case, Zi={Zi1, ...., Zip} For the ith
individual the conditional hazard rate at time t, given
Zi, can be modeled by the following linear model:
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where the bj(t)Õs are unknown parameter functions to be
estimated.  These functions measure the influence of the
respective covariates.  Because regression functions may
vary with time, analysis of them may reveal changes in
the influence of the covariates over time, which is one of
the main advantages of the additive model.  

Estimation of the risk coefficients is based on a least
squares technique.  This differs from estimation in the
proportional hazards model which is based on a partial
or conditional likelihood.  Derivation of these
estimators can be found in Aalen (1989).  It is much
easier to estimate the cumulative regression functions
than the regression functions themselves.   The column
vector B(t), with elements Bj(t), j=0, 1, ..., p , will be
estimated, where
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To obtain the estimates we first compute the n´(p+1)
matrix Y(t) which is defined as follows: if the ith
individual is a member of the risk set at time t (event
has not happened and the individual is not censored)
then the ith row of Y(t) is the vector
Zi=(1,Zi1,Zi2,...,Zip)¢.  If the ith individual is not in the
risk set at time t, then the corresponding row of Y(t)
contains only zeros.  It should be noted that one should
use the value of Y just before a relevant event time.

Let T1<T2<... be the ordered observed times when at
least one event occurs.  A reasonable estimator of B(t) is
given by
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where X(t) is a (p+1)´n generalized inverse of Y(t) and
Ak is a vector of zeros except for ones in the rows
corresponding to the subjects who experience an event
at time Tk.  The generalized inverse of Y(t) used here
was suggested by Aalen (1989):

X(t) = [Y(t)¢Y(t)]-1Y(t)¢.
It should be noted that the estimator B(t) is only
definable as long as Y(t) has full rank and therefore Y¢Y
is invertible.  Therefore, estimates are restricted to the
time interval where Y is not singular.  The upper
boundary on this restricted time interval will be
represented by t .  Also, the estimates of the baseline
hazard rate are not constrained to be non-negative.  

This macro allows more than one event at a given time
Tk, or tied event times.  The A(t) vector has a one in
the rows corresponding to the subjects who experience
an event at time Tk.

The following estimator for the covariance matrix of
B(t) (Aalen 1989) is used:
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where Ak
D is a diagonal matrix with Ak as the diagonal.  

Confidence intervals for B(t) can be constructed in the
usual fashion:

Bj(t) ± Z1-a/2[var(Bj(t))]
1/2

.

Testing can also be done in the additive hazards model.
Aalen (1989) discusses testing the hypothesis of no
regression effect for one or more of the covariates.  This
corresponds to testing the following null hypothesis for
some j = 1, ..., p:

HOj: bj(t) = 0,    for all t£t.
Testing this hypothesis can only be done in the range
where Y(t) has full rank.  A test statistic for HOj is
given by the jth element, Uj, of the vector
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where summation takes place over all event times.  K(t)
is a (p+1)´(p+1) diagonal matrix of weight functions.
Using the suggestion of Aalen (1989), the weight
matrix used here is:

K(t) = {diag[(Y(t)¢Y(t))-1]}-1 
.

An estimator of the covariance matrix of U is given by
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To test an individual HOj, the test statistic UjVjj
-1/2 can

be used.  It has an asymptotic standard normal
distribution under the null hypothesis.  The global test
statistic for testing simultaneously HOj  for all j = 1,
..., q, with q£p, can be done by constructing the q-
vector Uq = (U1,...,Uq)¢ and the q´q matrix Vq = ((Vge),
g=1, ..., q, e=1, ..., q).  The test statistic is the
quadratic form

Uq¢Vq
-1Uq

which has an asymptotic chi-square distribution with q
degrees of freedom if the null hypothesis is true.

It is also possible to generalize testing to that of
contrasts, or linear combinations of the bÕs.  Let C be a
r´(p+1) matrix of r contrasts.  The hypothesis tested
will be

HO: Cb(t) = 0,    for all t£t.

The formulas for U, K,  and V change slightly:
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Kc(t) = {diag[C(Y¢Y)-1C¢]}-1
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The test statistic for HO is Uc¢Vc
-1Uc which has a

limiting chi-square distribution with r degrees of
freedom if the null hypothesis is true.



3. The SAS Macro for the Additive Hazards                                    
Regression Model

A SAS macro is stored text that performs one or more
functions and is identified by a specified name.  When a
macro is invoked, or executed, values are passed from
the userÕs program to the macro through variables
called macro parameters.  

The macro presented here is called Òadditive.Ó  The
additive macro fits the additive hazards model for
continuous or binary covariates.  The test statistic for
the global test of no effects is calculated, and an analysis
of variance table is printed.  Options such as testing
linear contrasts, plotting parameter estimates over time,
and creating output data sets are available.  This macro

is written in IML (SAS/IMLâ1989) which is a matrix
language built into SAS.

Even though the additive hazards model can have time-
dependent covariates, this macro is not equipped to
handle them.  Only fixed covariates should be used.
Before any estimation begins, the macro will check for
missing data.  If an observation has a missing value for
the event time, censoring indicator, or any of the
covariates then that observation will be deleted and will
not be used in any calculations.  The output will
contain a message stating which cases, if any, were
deleted due to missing values.  

This macro uses a data set specified by the user.  In
order for the program to run correctly, the data set must
meet certain criteria.  First, the data set must have the
following ordering of its variables: Time, Censoring
Indicator, Covariates.  Second, the data set must be
sorted by ascending time.  Third, the censoring
indicator needs to specified as follows:

0 - censored; 1 - event.
Finally, all categorical variables should be defined as
binary variables.  The user now needs to be in IML,
which is done by issuing the statement  Òproc imlÓ in
the program.  The additive macro is included in the
program via the Ò%include ÔfilenameÕÓ statement where
ÔfilenameÕ is the name of the additive macro file.  Next
the eight parameters are defined:

1. Data set parameter: name of userÕs data set.
2. Confidence level parameter: defines a for (1-

a)´100% confidence intervals.
3. Time unit parameter: defines the units of the

time variable.
4.  Variable list parameter: lists the names of

the covariates, in the order they are read in the data set.
5. Option parameter: defines which options of

the five possible options the user wants by placing a
ÒyÓ for ÒyesÓ or a ÒnÓ for ÒnoÓ in the position of the
desired option.

Options:
(1) Printing of the cumulative parameter

estimates and respective standard deviations for each
event time.

(2)   Testing of general linear contrasts.
(3) Output data set containing parameter

estimates, standard deviations, and confidence limits.
(4) Line plots of each parameter estimate

versus time.
(5)  Output data set containing U and V for

test statistics.
 6. Contrast matrix parameter: r´(p+1)-matrix
that defines the r linear contrasts to be tested.

7. Parameter naming the first output data set:
contains the output data set requested from Option (3)
above.   

8. Parameter naming the second output data
set: contains the output data set requested from Option
(5) above.

The contents of the first output data set are as follows.
It contains parameter estimates over time as well as the
respective standard deviations and (1-a) ´ 100%
confidence intervals.  The first column is time.  The
next (p+1) columns are the parameter estimates (in
order), the next (p+1) columns are the respective
standard deviations, the next (p+1) columns are the
respective lower confidence limits,  and the final (p+1)
columns are the respective upper confidence limits.

The contents of the second output data set are as
follows.  It contains the vector U and the respective
variance-covariance matrix V.  The first column is the
individual Uj and the next p columns are the variance-
covariance matrix V.

The additive macro is invoked using the following
command:

%additive(data set parameter,confidence level
parameter,time unit parameter, variable list parameter,
option parameter, contrast matrix parameter, parameter
naming the first output data set,parameter naming the
second output data set).

Now that the macro has been included in the program
and the parameters have been defined, the macro can be
invoked, or called, into the program. It is crucial that
the user has the parameters listed in the following order.
The parameters MUST be listed in this order because
they are positional.  This means that the additive macro
reads in the first parameter as the data set parameter, the
second parameter as the confidence level parameter, and
so on.  If the parameters are NOT listed in this order,
the program will not work.  It is also necessary that
there are eight parameters in the invocation statement.
Even if the user does NOT choose the contrast testing
option or the output data set options, dummy



parameters need to be included in the invocation
statement in these positions because the positions in
name-style invocation are positional.

The macro calculates the parameter estimates for each
unique time.  The parameters are only estimable in the
range where the Y(t) matrix is of full rank.  The macro
checks if this matrix is of full rank at each time and
stops estimating once the matrix is singular.  The
output will display a message that defines the range of
estimability.  Using the given data set, the macro will
automatically calculate the chi-square statistic for the
global test of no effects.  The hypothesis is  
          HO j: bj(t) = 0    for all j = 1, ..., p   and all t£t.
The heading ÒGlobal TestÓ and the test statistic,
degrees of freedom, and the corresponding p-value are
printed.  An analysis of variance table is printed that
will list the individual effects and each effectsÕ chi-
square statistic, degrees of freedom, and corresponding
p-value.  The global test and analysis of variance table
are the only items calculated and printed automatically.
Whatever options specified by the user will then be
processed.

4. Examples of The SAS Additive Hazards
Regression Macro

Several examples will be given to illustrate the additive
macro.  The data used is from Kardaun (1983) who
reported data on 90 males diagnosed with cancer of the
larynx during the period 1970-1978 at a Dutch hospital.
Times recorded are the intervals (in years) between first
treatment and either death or the end of the study
(January 1, 1983).  Also recorded are the patients age in
years at the time of diagnosis and the stage of the
patientÕs cancer.  The four stages of disease in the study
were based on the T.N.M. classification used by the
American Joint Committee for Cancer Staging (1972).
The four groups are labeled Stage 1 through Stage 4,
which is ordering the stages from least serious to most
serious.  Stage 1 is the baseline.  The variables Stage2
through Stage4 are binary variables created to define
stage.  They are defined as follows:

Stage2=  1 if Stage 2 disease
             0 if Stage 1, 3, or 4 disease

Stage3=  1 if Stage 3 disease
             0 if Stage 1, 2, or 4 disease

Stage4=  1 if Stage 4 disease
             0 if Stage 1, 2, or 3 disease.

The age variable, age,  has been centered at its mean:

Age = age at diagnosis - 64.11.

The first example is the simplest possible program, one
that defines ÒnoÓ for all five options in the option
parameter.  Output follows the SAS program.

Example 1: Basic program
options nocenter pagesize=59 linesize=80;
 data cancer;
  infile 'larynx.dat';
  input stage time age year censor;
  stage2=0; if stage=2 then stage2=1;
  stage3=0; if stage=3 then stage3=1;
  stage4=0; if stage=4 then stage4=1;
  age=age-64.11;
 proc sort; by time;
* The following routine in proc iml creates the input
SAS data set for this problem;
proc iml;
  use cancer;
  read all var _num_ into temdat;
  dummy=j(90,6,0);
  dummy[,1]=temdat[,2];   * time;
  dummy[,2]=temdat[,5];   * censor;
  dummy[,3]=temdat[,6];   * stage 2;
  dummy[,4]=temdat[,7];   * stage 3;
  dummy[,5]=temdat[,8];   * stage 4;
  dummy[,6]=temdat[,9];   * age-64.11;
  create mydata from dummy;
  append from dummy;
  quit;
proc iml;
        %include 'addmacro';
        level=0.05;
        unit={"Years"};
        varlist={"Stage 2", "Stage 3", "Stage 4" ,"Age"};
        option={n,n,n,n,n};
%additive(mydata,level,unit,varlist,option,dummy1,
dummy2,dummy3);
        quit;

The following output is the result from the first
example:

The SAS System
Additive Hazards Model  

   
    No missing data: all observations were used in
analysis.

90 observations used.

Estimates are restricted to the time interval 0  to   4.30

Global Test                
Chi-Square   d.f   p-value
10.9613        4    0.0270



 Analysis of Variance           
Effect       Chi-Square   d.f   p-value
Stage 2         0.1456     1    0.7027
Stage 3         3.0062     1    0.0829
Stage 4         8.4655     1    0.0036
Age              0.2333     1    0.6291

Example 2: Illustrating Some Options

This example illustrates the option of testing contrasts
(ÒyÓ in position 2 in the option parameter) and creating
the two output data sets (ÒyÓ in position 3 and position
5 in the option parameter).  Output follows the SAS
program.

Use the same code as in Example 1 to create the data
set Òmydata.Ó
        proc iml;
        %include 'addmacro';
        sig=0.05;
        unittime={"Years"};
        covlist={"Stage 2", "Stage 3", "Stage 4","Age"};
        options={n,y,y,n,y};
        contrast={0 1 -1 0 0, 0 0 1 -1 0};
      

%additive(mydata,sig,unittime,covlist,options,contrast,
newdat1,newdat2);
        quit;

Output from Example 2:
The SAS System

Additive Hazards Model          

No missing data: all observations were used in
analysis.

90 observations used.

Estimates are restricted to the time interval 0 to   4.30

Global Test                
Chi-Square   d.f   p-value
10.9613     4    0.0270

Analysis of Variance           
Effect    Chi-Square   d.f   p-value
Stage 2         0.1456     1    0.7027
Stage 3         3.0062     1    0.0829
Stage 4         8.4655     1    0.0036
Age              0.2333     1    0.6291

        Test of Linear Combinations     
 Contrast Matrix      0         1        -1         0         0
                          0         0         1        -1         0

  Chi-Square   d.f   p-value
    6.8131        2    0.0332

Comments:
This particular contrast matrix,

0         1        -1         0         0
0         0         1        -1         0

is testing the hypothesis that
Ho: b1 = b2 = b3

which is the test of no difference in survival between
Stage 2, Stage 3, and Stage 4 patients.

It is noted that there is no output printed from
using options 3 and 5 (creating the output data sets) but
these data sets are now ready to be utilized in the userÕs
program.  An example of this is to use the estimates
and confidence intervals given in the first output data
set and create a detailed graph using SAS GRAPH
â(1990).

5. Discussion

The additive hazards regression model is very
useful in modeling survival data.  This SAS macro has
made the model more accessible and hopefully many
people will take advantage of it.  This macro calculates
the parameter estimates and respective standard
deviations and confidence intervals.  Testing the
hypothesis of no regression effect for one or more of the
covariates can be done as well as tests of contrasts.
Line plots can be printed of each parameter estimate
versus time to view how the covariate effects may
change over time.  Output data sets that include the
parameter estimates, standard deviations, and confidence
intervals can be created and used for further analysis.     

This macro is available from the World Wide Web site
http://biostat.mcw.edu/Software.html .
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