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Abstract

Often when comparing the survival rates of individuals given either of two treat-

ments the analysis stops with a test of the hypothesis of no treatment di�erence and

perhaps a plot of the two survival functions. The hypothesis test is usually a com-

parison of the two survival curves over the entire observational period. An alternative

approach to this problem is to provide an investigator with a con�dence set for the set

of times at which the survival rates of the two treatments are the same. We discuss

how such con�dence sets can be constructed when the proportional hazards or additive

regression model is used to adjust the comparison of interest for other factors which

may in
uence survival. These approaches are illustrated on retrospective data gathered

to compare the survival rates of allogeneic and autologous bone marrow transplants

for acute leukemia.

1 Introduction

A common problem arising in biomedical applications is the comparison of the survival
functions or hazard rates of two treatments. Most standard statistical tests are based on
comparing the survival curves or equivalently the hazard functions over a given time period.
The time period considered is typically the period from initiation of the treatment to some
point in time where observation of the patients ceases. This comparison may be made by the
log rank test (cf. Andersen et al. 1993), for example, when there are no other covariates that
may in
uence survival. When there are other covariates that may a�ect outcome in addition
to the treatments under consideration, testing of treatment e�ects is carried out by some
type of regression technique. These tests may be based on any number of parametric or semi-
parametric models, but most common are tests based on either the Cox (1972) proportional
hazards model or on Aalen's (1989, 1993) addative hazards model.
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The results of these analyses tell the investigator whether the two treatments have the
same survival rates or not. When the results of the test indicate that the survival curves
are di�erent the natural question posed by most clinicians is "At what times are these two
treatments di�erent?" The answer to this question is crucial to a patient and physician in
deciding which of the two treatments to use. It is of special importance when one treatment
has higher early survival but lower long term survival. This question is of particular interest
in applications like bone marrow transplantation where, when comparing disease free survival
rates, one procedure may have a higher early mortality rate due to treatment toxicity than
the other treatment but among survivors of this early period the relapse rate is lower.

In this note we present methods for constructing a con�dence set for the times at which
the two treatments have the same survival function based on Aalen's additive hazards model.
Con�dence sets for the times at which one treatment has a survival probability at least as
high as the other treatment are also presented. The con�dence sets are found by inverting a
test that compares the survival rates for the two treatments at �xed points in time. The set
of all times for which this test accepts the hypothesis of no treatment di�erence provides the
desired con�dence set. Note that the con�dence set is based on a comparison of the survival
rates or cumulative hazard rates at �xed points in time as opposed to the usual tests which
compare survival for the entire curve.

The random sets, A� that we construct by this technique are in fact conservative (1 �
�)� 100% con�dence sets for the set, �, of all times at which the two survival functions are
the same. To see this consider the probability that � is a subset of A�. Let t be an element
of �. For such a t the subset of the sample space for which this t will also be in the set
A� has probability (1� �) by our method of construction. This will be true for any t in �,
however di�erent t's yield di�erent subsets of the sample space. The coverage probability
is the probability of the union of theses di�erent subsets as indexed by t in �. Since each
subset has probability exactly (1� �) our coverage probability must be at least (1� �).

In the next section we review results from Klein and Zhang (1997) for comparing two
treatments when an adjustment for other covariates is needed using the Cox (1972) pro-
portional hazards model. We review both the case where there is no interaction between
these other covariates and the main treatment comparison and the case where there is an
interaction between the main treatment e�ect and some of the covariates. In this section the
con�dence sets are based on a strati�ed Cox regression model.

In section 3 we show how Aalen's additive model can be used to generate these con�dence
sets. Here the sets are based on �tting the full additive model to the data and inverting a
pointwise test that the regression function for treatment is equal to zero.

In Section 4 we present an example of these con�dence sets using data from The Interna-
tional Bone Marrow Transplant Registry and The Autologous Blood And Marrow Registry.
The primary comparison of interest is between the leukemia free survival rates of autologous
and allogeneic bone marrow transplants for acute leukemia patients. Autologous transplants,
where a patient's own marrow is used to re grow their immune system, are typically less toxic
then allogeneic transplants where the marrow from an HLA matched sibling is used. Pa-
tients do not experience graft-versus-host disease which is a leading contributor to death in
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the �rst several months after transplant. It is well known, however, that graft-versus-host
disease has some protective e�ect against the reoccurrence of the leukemia, so allogeneic
patients who survive the initial period tend to have lower leukemia relapse rates, o� setting
their higher early treatment related mortality. For a patient there is thus a trade o� between
early high mortality with allogeneic transplants and lower reoccurrence rates. To help in the
decision between these two competing treatment modalities a con�dence set for the times at
which the survival probabilities of the two treatments are the same is of interest. Also, since
autologous transplants are easier to perform as no donor is needed, a con�dence set for those
times where the survival probability for a autologous transplant patient is not smaller than
the corresponding survival probability for an allogeneic transplant patient is also of interest.

2 Con�dence Set Based On Cox's Proportional Haz-

ards Model

Often there are other risk factors that need to be adjusted for prior to making the main
comparison between the two treatments in many experiments. In this section we construct
the con�dence set based on the proportional hazards model which has become one of the
most commenly used model in the analysis of failure time observations.

2.1 Adjustment For Covariates Not Confounded With Outcome

Let Z = (Z1; � � � ; Zp) be a vector of �xed time covariates that in
uence survival. In this
section we assume that there is no signi�cant interaction between the comparison of interest
(treatment) and any of these covariates. Here we �t a proportional hazards model for the
explanatory covariates stratifying on the treatment of interest. That is we �t the model

�(tjZ;Treatment) =

(
�10(t) expf�

T
Zg; for treatment 1;

�20(t) expf�
T
Zg; for treatment 2:

(2.1)

Let �̂ and I(�̂) be the partial maximum likelihood estimator and the observed information
for this model. An estimator of the baseline cumulative hazard rate for treatment j, j = 1; 2
is given by Breslow's (1975) estimator

�̂j0(t) =
Z t

0

dNj(u)

S
(0)
j (�̂; u)

; where (2.2)

S
(0)
j (�̂; u) =

nX
i=1

Yij(u) expf�
T
Zig (2.3)

with Yij(u) the indicator of whether the ith individual is at risk at time u and is in the jth
group.
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For an individual with a covariate vector Z0, the two treatments will have the same
survival rate at time t0 if �(tjZ0;Treatment 1) = �(tjZ0;Treatment 2), which from (2.1)
is equivalent to having �10(t0) = �20(t0) or �(t0) = �20(t0) � �10(t0) = 0. Note that this
comparison is independent of the value of Z0. The test statistic for this hypothesis is

�̂(t0) = �̂20(t0)� �̂10(t0): (2.4)

Using standard counting process techniques the large sample variance of this statistic can
be shown to be

V ar[�̂(t0)] =
2X

j=1

Z t0

0

dNj(u)

[S
(0)
j (�̂; u)]2

+W T (�̂; t0)[I(�̂)]
�1
W (�̂; t0); where (2.5)

W
T (�̂; t0) =

Z t0

0

~Z2(�̂; u)d�̂20(u)� ~Z1(�̂; u)d�̂10(u);

~Zj(�̂; u) =
S
(1)
j (�̂; u)

S
(0)
j (�̂; u)

; and (2.6)

S
(1)
j (�̂; u) =

nX
i=1

Yij(u)Zi expf�̂
T
Zig:

An �-level test of Ho : �(t0) = 0 versus Ha : �(t0) 6= 0 is accepted when

j�̂(t0)=
q
V ar[�̂(t0)]j � z�=2, where z� is the �th upper quantile of a standard normal random

variable. Inverting this test yields a 100 � (1 � �) con�dence set for the times at which
S1(t) = S2(t) asn

t0 : �z�=2 � �̂(t0)=[V ar(�̂(t0))]
1=2 � z�=2

o
=

�
t0 : �̂(t0)� z�=2

q
V ar(�̂(t0)) � 0 � �̂(t0) + z�=2

q
V ar(�̂(t0))

�
(2.7)

To �nd sets of time where we are (1 � �) � 100% con�dent that S1(t) � S2(t) consider
testing the hypothesis H0 : �1(t0) � �2(t0) versus HA : �1(t0) < �2(t0). This is equivalent
to testing H0 : �(t0) � 0 versus HA : �(t0) > 0. The desired con�dence set for those points
in time where treatment 2 is at least as good as treatment 1 (�(t0) � 0) is given by

�
t0 : �̂(t0)=

q
V ar[�̂(t0)] < z�

�
=
�
t0 : 0 � �̂(t0)� z�

q
V ar[�̂(t0)]

�
:

To illustrate these calculations we consider data from a retrospective study of the e�ec-
tiveness of bone marrow transplantation for patients with acute myelocytic leukemia (AML).
Of interest is the comparison of survival rates between patients given either an autologous
(auto) or allogeneic (allo) transplant. The data set consists of data on 1,325 patients reported
over a four year period to either the International Bone Marrow Transplant Registry (allo
transplants) or the Autologous Blood and Marrow Registry (auto transplants). 381 patients
received an autologous transplant and 944 a HLA identical sibling allogeneic transplant. In
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addition to type of transplant, on each patient includes remission status (1st or second com-
plete remission), age (dichotomized as � 30 or > 30) and Karnofsky score (dichotomized as
< 90 or � 90) at transplant. For patients in second complete remission the duration of the
�rst complete remission (dichotomized as � 1 yr or > 1 yr) is also available.

The con�dence set is based on the results of �tting a proportional hazards model, strat-
i�ed on transplant type, with binary covariates for remission status, age, Karnofsky score
and duration of �rst complete remission. We �nd that a 95% con�dence set for the times
where the survival probabilities for the two transplant types are not di�erent, adjusted for
this set of covariates, is the set of time points given by

C2 = ft0j t0 2 [0; 0:132) [ [0:151; 1:242) [ [2:281; 2:418)gyears:

A 95% con�dence set for those times where patients given an auto transplant have a survival
probability at least as high as patients given an allo transplant is given by

C1 = ft0j t0 2 [0; 0:861) [ [0:872; 1:179)g :

2.2 Adjustment For Covariates Confounded With Outcome

In some instances the comparison of the treatments of interest is complicated by some of the
explanatory covariates have di�erential e�ects on the survival rates for the two treatments.
Suppose that the covariate vector can be partitioned as ZT = (ZT

1 ;Z
T
2 )

T , where Z1 is a
vector of length q1 of the covariates confounded with treatment and Z2 is a vector of length
q2 of the covariates not confounded with treatment.

To construct the con�dence set where the survival rates are the same for the two treat-
ments a strati�ed proportional hazards model is used. We �t the model

�(tjZ;Treatment) =

(
�10(t) expf


T
1 Z1 + �TZ2g; for treatment 1;

�20(t) expf

T
2 Z1 + �TZ2g; for treatment 2:

(2.8)

Estimates for � = (�T1 ; 

T
1 ; 


T
2 ) are found by �tting a Cox model, strati�ed on treat-

ment group to the data with an augmented covariate vector ZT = (ZT
2 ;Z

T
1 I[Treatment =

1];ZT
1 I[Treatment = 2]). For a given set of confounding factors, Z10, the two treatments

will have the same survival rate at time t0 if

�(t0jZ10) = �20(t0) expf

T
2 Z10g � �10(t0) expf


T
1 Z10g (2.9)

is equal to zero. The estimator of �(t0jZ10) given by

�̂(t0jZ10) = �̂20(t0) expf
̂
T
2 Z10g � �̂10(t0) expf
̂

T
1 Z10g

follows from the �tted Cox model with �j0() estimated using Breslow's estimator (2.2).

An estimator of the asymptotic variance of �̂(t0jZ10) can be shown to be

V ar(�̂(t0jZ10)) =
2X

j=1

Z t0

0
expf2
̂Tj Z10g

dNj(u)

[S
(0)
j (�̂; u)]2

+

+
n
W 2(�̂; t0)�W 1(�̂; t0)

oT
[I(�̂)]�1

n
W 2(�̂; t0)�W 1(�̂; t0)

o
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Here

W j(�̂; t0) = expf
̂Tj Z10g
Z t0

0
[ ~Zj(�̂; u)�Z(j)]d�̂j0(u); j = 1; 2

with ~Zj(�̂; u), de�ned by (2.6) and Z(1) = (0T ;ZT
10; 0

T ) and Z(2) = (0T ; 0T ;ZT
10):

Since at t0 an � level test of the equality of the two survival functions for a �xed value
of Z is accepted when �̂(t0jZ10)=[V ar(�̂(t0jZ10))]

1=2 is in the interval [�z�=2; z�=2], a
(1� �)� 100% con�dence set for those times at which the two treatments are not di�erent
is given by n

t : �z�=2 � �̂(t0jZ10)=[V ar(�̂(t0jZ10))]
1=2 � z�=2

o
Similarly a con�dence set for those points in time where treatment 2 is at least as good

as treatment 1 is given byn
t : �̂(t0jZ10)=[V ar(�̂(t0jZ10))]

1=2 � z�
o

To illustrate this approach we again use the data comparing autologous and allogeneic
transplants. Here, based on a standard semi-parametric regression analysis, it appears that
age has a di�erential e�ect on the two types of transplants. To adjust for this confounding
factor a proportional hazards model strati�ed on type of transplant is �t to the covariates
remission status, Karnofsky score (< 90 or � 90), duration of �rst complete remission
(dichotomized as � 1 yr or > 1 yr) and two interaction covariates. The interaction covariates
are Z11 = 1 if age > 30 and allo transplant and Z12 = 1 if age > 30 and auto transplant.
Note that here the estimate of � for a patient under age 30 is the di�erence of the baseline
cumulative hazards from the strati�ed Cox model, while for patients over 30 each of the
baseline hazards is multiplied by the factor exp[
j] before di�erencing.

The 95% con�dence sets for the times (in years) where the two treatments have the same
survival probability are

C2�30 = ft0jt0 2 [0; 1:242) [ [2:349; 2:418)g

for patients age 30 or less and

C2>30 = ft0jt0 2 [0; 0:115) [ [0:118; 0:129) [ [0:1590; 5:891)g

for patients over age 30. This suggests that for older patients there is no advantage in survival
for either type of transplant but for younger patients the two survival rates are di�erent after
the �rst 15 months or so.

A 95% con�dence set for those times where patients given an auto transplant have a
survival probability at least as high as patients given an allo transplant is given by

C1�30 = ft0jt0 2 [0; 0:858) [ [0:885; 1:162)g

or patients age 30 or less and

C1>30 = ft0jt0 2 [0; 5:891)g

for patients over age 30. Note that this suggests that the auto transplant survival rate is at
least as good as the allo transplant rate for patients over age 30, but for patients under 30
the survival rate is only as good for a little over a year after transplant.
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3 Con�dence Sets Based On The Additive Hazards

Model

3.1 Estimation In The Additive Model

An alternative to the proportional hazards model is the additive hazards model �rst suggested
by Aalen (1980). This model allows for covariate e�ects which vary over time since the
regression coe�cients are functions of time as opposed to the Cox model where they are
constants. This approach uses a linear model for the conditional hazard rate and estimates
regression coe�cient functions by a least squares technique.

To de�ne the model suppose we have an individual with covariates Z1(t); � � � ; Zp(t). For
such an individual the model for the conditional hazard rate is given by

�(tjZ1(t); :::; Zp(t)) =

(
�0(t) +

Pp
K=1 �k(t)Zk(t) if this individual is at risk at time t;

0 otherwise

Here the �j(t)'s, j = 0; : : : ; p are functions of time to be estimated form the data.
Suppose we observe n individuals. Associated with each individual is a p-vector of pos-

sibly time dependent covariates, Zi(t) = (1; Zi(t); � � � ; Zp(t)). (Here the �rst element of the
covariate vector is 1 to allow for a baseline intensity.) Let �i(t) denote the intensity at which
the event occurs for the ith subject. To write the model in matrix notation let Y (t) be the
n � (p + 1) matrix whose ith row is Zi(t) if individual i is at risk at time t and is a row of
zeros if this subject is not at risk at time t. Then the additive regression model is

�(t) = Y (t)�(t):(3:1)

Here the �rst element of �(t) is a baseline intensity and the remaining elements are the
regression functions which describe the e�ect of the covariate over time on survival.

The only restriction on covariates which can be used in this model is that they are
predictable in the sense that their value is known just prior to time t (cf. Aalen 1978). In
the data set to be used here to illustrate these techniques all covariates are known at the
time of transplant so this condition is satis�ed.

Estimation for the additive model is based on a least squares approach. Direct estima-
tion of �(t) is di�cult so we estimate instead the cumulative regression function, A(t) =
(A1(t); :::; Ap(t))

T , where

Aj(t) =
Z t

0
�j(t)dt; j = 0; 1; :::; p:

Let T1 < T2 < ::: be the ordered observed times at which events occur. Then Aalen (1980,
1989) shows that the least squares estimator of A(t) is given by

Â(t) = sumTK�tX(Tk)Ik; where(3:2)
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X(t) is a generalized inverse of Y (t), and Ik is the n-vector of whose ith element is 1 if
subject i experiences the event at time Tk and is 0 if they don't. The estimator (3.2) is only
de�ned over the range where the matrix Y (t) is of full rank. Let � be the random point in
time where Y () loses its full rank.

Any generalized inverse can be used in computing the estimator (3.1). By analogy to the
usual linear models analysis we shall use the generalized inverse suggested by Aalen (1980),
Hu�er and McKeague (1991), McKeague (1988), namely

X(t) = (Y (t)TY (t))�1Y (t)T (3:3)

An alternative choice of the generalized inverse is a weighted inverse which leads to the
analog of a weighted least squares estimate (See Hu�er and McKeague (1991), McKeague
(1988)).

The variance matrix of Â(t) can be estimated consistently by

�(t) =
X
Tk

X(Tk)DkX(Tk)
T (3:4)

where D is the diagonal matrix with Ik as the diagonal. One can show (cf. Aalen 1980,
Andersen et al (1993)) that Â(t) converges weakly to a Gaussian process with indepen-
dent increments under a wide set of regularity conditions. A SAS Macro to perform the
calculations need to obtain Â(t) and �(t) is described in Howell and Klein (1996).

3.2 Con�dence Sets Adjusted For Other Covariates Not Con-

founded With Treatment

As for the proportional hazards model, to �nd a con�dence set for those times where the two
treatments are the same adjusting for a p-variate set of covariates Z1; :::; Zp we base the set on
a series of pointwise tests of equality of the adjusted cumulative hazard rates for the two treat-
ments. For each individual de�ne the p+2 dimensional vector Zi(t) = (1; Z1(t); :::; Zp(t);W ),
where W = 1 if this individual received treatment 2 and 0 otherwise. Using this coding of
the covariates we compute Â(t) and �(t). Now the di�erence in cumulative hazard rates
between an individual given treatment 2 and an individual given treatment 1 is

�(tjZ) = �(tjZ; Treatment 2)� �(tjZ; Treatment 1)

= fA0(t) +
pX

k=1

Ak(t)Zk(t) + Ap+1(t)g � fA0(t) +
pX

k=1

Ak(t)Zk(t)g

= Ap+1(t)

The variance of this estimator is found directly from �(t).
An �-level test of Ho : �(t0) = 0 versus Ha : �(t0) 6= 0 is accepted when

j�̂(t0)=
q
V ar[�̂(t0)]j � z�=2, where z� is the �th upper quantile of a standard normal random
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variable. Inverting this test yields a 100 � (1 � �) con�dence set for the times at which
S1(t) = S2(t) asn

t0 : �z�=2 � �̂(t0)=[V ar(�̂(t0))]
1=2 � z�=2

o
=

�
t0 : �̂(t0)� z�=2

q
V ar(�̂(t0)) � 0 � �̂(t0) + z�=2

q
V ar(�̂(t0))

�
(3.10)

To �nd sets of time where we are (1 � �) � 100% con�dent that S1(t) � S2(t) consider
testing the hypothesis H0 : �1(t0) � �2(t0) versus HA : �1(t0) < �2(t0). This is equivalent
to testing H0 : �(t0) � 0 versus HA : �(t0) > 0. The desired con�dence set for those points
in time where treatment 2 is at least as good as treatment 1 (�(t0) � 0) is given by

�
t0 : �̂(t0)=

q
V ar[�̂(t0)] < z�

�
=
�
t0 : 0 � �̂(t0)� z�

q
V ar[�̂(t0)]

�
:

3.3 Con�dence sets when the covariates are confounded with treat-

ment

Suppose that the covaraites vector can be partitioned into as a set Z1 of dimension q1
of covariates confounded with treatment and a set Z2 of dimension q2 of covariates not
confounded with treatment. For this case we de�ne for each individual the q2 + 2q1 + 2
dimensional vector Zi(t) = (1;Z2;WZ2; [1 �W ]Z2;W ). Here W is again the indicator of
an individual being in treatment group 2. Note that for this covariate vector we have the
following cumulative hazard rates for the two treatment groups:
Treatment 2: A0(t) +

Pq1
k=1Ak(t)Z2k(t) +

Pq2
k=1A1+q1+k(t)Z1k(t) + A2+q1+q2+k(t)

Treatment 1: A0(t) +
Pq1

k=1Ak(t)Z2k(t) +
Pq2

k=1A1+q1+q2+k(t)Z1k(t)
For an individual with a set Z10 of covariates for Z1, the survival functions will be the

same at time t if these two cumulative hazard rates are the same. That is if

�(tjZ10 = A2+q1+q2+k(t)
q2X
k=1

[A1+q1+q2+k(t)� A1+q1+k(t)]Z1k(t) = 0:

Note that if we let C = (0;Z10;�Z10; 1), where 0 is the q1 vector of zero's then �(tjZ10 =
CA(t) and the variance of �̂(tjZ10 = CÂ(t) is estimated by C�(t)CT .

Since at t0 an � level test of the equality of the two survival functions for a �xed value
of Z is accepted when �̂(t0jZ10)=[V ar(�̂(t0jZ10))]

1=2 is in the interval [�z�=2; z�=2], a
(1� �)� 100% con�dence set for those times at which the two treatments are not di�erent
is given by n

t : �z�=2 � �̂(t0jZ10)=[V ar(�̂(t0jZ10))]
1=2 � z�=2

o
Similarly a con�dence set for those points in time where treatment 2 is at least as good

as treatment 1 is given byn
t : �̂(t0jZ10)=[V ar(�̂(t0jZ10))]

1=2 � z�
o
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4 Example

To illustrate these calculations we consider data from a retrospective study of the e�ectiveness
of bone marrow transplantation for patients with acute myelocytic leukemia (AML). Of
interest is the comparison of survival rates between patients given either an autologous
(auto) or allogeneic (allo) transplant. The data set consists of data on 1,325 patients reported
over a four year period to either the International Bone Marrow Transplant Registry (allo
transplants) or the Autologous Blood and Marrow Registry (auto transplants). 381 patients
received an autologous transplant and 944 a HLA identical sibling allogeneic transplant.

The comparison of interest is between the leukemia free survival times (LFS) of the two
groups. A patient is considered as an event if they die or their leukemia returns. The event
time is the smaller of the time of relapse or death. Figure 1 shows the unadjusted Kaplan-
Meier estimators for the two treatment groups. The log rank test of equality of the survival
functions in the two treatment groups is rejected with a p-value of 0:0071.

In addition to type of transplant, data on each patient includes remission status (1st
or second complete remission), age (dichotomized as � 30 or > 30) and Karnofsky score
(dichotomized as < 90 or � 90) at transplant. For patients in second complete remission the
duration of the �rst complete remission is also recorded(dichotomized as � 1 yr or > 1 yr).
We wish to determine when the two types of transplants have the same survival rate after
adjustment for these �xed explanatory covariates.

We �rst assume that there is no interaction between these covariates and the type of
transplant. For the proportional hazards approach a Cox model is �t, strati�ed on transplant
type, with binary covariates for remission status, age, Karnofsky score and duration of �rst
complete remission. Applying the results in Section 2.2 we �nd that a 95% con�dence set
for the times where the survival probabilities for the two transplant types are not di�erent,
adjusted for this set of covariates, is the set of time points given by

C2 = ft0j t0 2 [0; 0:132) [ [0:151; 1:242) [ [2:281; 2:418)gyears:

A 95% con�dence set for those times where patients given an auto transplant have a survival
probability at least as high as patients given an allo transplant is given by

C1 = ft0j t0 2 [0; 0:861) [ [0:872; 1:179)g :

For the additive model discussed in Section 3.2 we �t the model with covariates for type
of transplant and for the four �xed covariates. The 95% con�dence set for the times where
the survival probabilities for the two transplant types are not di�erent based on this model
is given by

C2 = ft0j t0 2 [0; 0:137) [ [0:143; 0:855) [ [0:880; 1:102) [ [1:124; 1:1662)gyears:

The 95% con�dence set for those times where patients given an auto transplant have a
survival probability at least as high as patients given an allo transplant based on the additive
model is given by
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C1 = ft0j t0 2 [0; 0:526) [ [0:534; 0:537) [ [0:611; 0:641) [ [0:688; 0:726) [ [0:732; 0:768) [ [0:959; 0:984)g :

The sets C1 suggest that for a period of time after transplant auto patients do not do any
worst then allo patients, but after about this period they have smaller survival probabilities.
This time interval is estimated to be a little over a year based on the proportional hazards
model and a little under a year based on the additive model.

The above intervals assumed that the �xed covariates were not confounded with treat-
ment. However, Here, based on a standard semi-parametric based on either the proportional
hazards or additive hazards model, it appears that age has a di�erential e�ect on the two
types of transplants.

To adjust for this confounding factor using the proportional hazards approach, a model
strati�ed on type of transplant is �t to the covariates remission status, Karnofsky score,
duration of �rst complete remission and two interaction covariates. The interaction covariates
are Z11 = 1 if age > 30 and allo transplant and Z12 = 1 if age > 30 and auto transplant.

Using the results in Section 2.2, 95% con�dence sets for the times (in years) where the
two treatments have the same survival probability are

C2�30 = ft0jt0 2 [0; 1:242) [ [2:349; 2:418)g

for patients age 30 or less and

C2>30 = ft0jt0 2 [0; 0:115) [ [0:118; 0:129) [ [0:1590; 5:891)g

for patients over age 30. This suggests that for older patients there is no advantage in survival
for either type of transplant but for younger patients the two survival rates are di�erent after
the �rst 15 months or so.

A 95% con�dence set for those times where patients given an auto transplant have a
survival probability at least as high as patients given an allo transplant based on the pro-
portional hazards model is given by

C1�30 = ft0jt0 2 [0; 0:858) [ [0:885; 1:162)g

for patients age 30 or less and

C1>30 = ft0jt0 2 [0; 5:891)g

for patients over age 30.
These intervals suggest that for older patients there is little if any advantage in survival

for either type of transplant but for younger patients the two survival rates are di�erent after
the some period of time. This time is about

For the additive model approach we �t a using a covariate vector with components
remission status, Karnofsky score, duration of �rst complete remission , Z11, Z12 = 1, and
the indicator of type of transplant. Applying the results in Section 3.3 we �nd that 95%
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con�dence sets for the times (in years) where the two treatments have the same survival
probability based on the additive model are

C2�30 = ft0jt0 2 [0; 0:398) [ [0:622; 0:632) [ [0:696; 0:721) [ [0:732; 0:855) [ [0:872; 1:242) [ [1:672; 2:837) [

for patients age 30 or less and

C2>30 = ft0jt0 2 [0; 0:066) [ [0:159; 0:162) [ [0:165; 0:167) [ [0:189; 0:195) [ [0:197; 5:05)g

for patients over age 30. The conclusions are similar to those obtained from the proportional
hazards model.

A 95% con�dence set for those times where patients given an auto transplant have a
survival probability at least as high as patients given an allo transplant based on the additive
hazard model is given by

C1�30 = ft0jt0 2 [0; 0:356) [ [2:059; 2:448) [ [4:260; 5:052)g

for patients age 30 or less and

C1>30 = ft0jt0 2 [0; 1:8558) [ [1:8722; 2:083) [ [2:215; 2:418) [ [3:753; 5:052)g

for patients over age 30.
These intervals suggest that for older patients there is little if any advantage in survival

for either type of transplant. For younger patients the proportional hazards model suggests
that the survival rates are after about two and a half years. Based on the one sided sets
constructed by additive hazard model, the inference for younger patients is that they have
survival given an auto transplant at least as good as if they were given an allo transplant in
the �rst 3 months after transplant, for a brief period in year two and then again after about
3 and three-fourth years.
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