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GROUPED FAILURE TIMES

In many investigations for life times, data are grouped prior to their statistical anal-
ysis. The grouped survival data consists of occurrence and exposure data over given
time intervals and possible covariate strata. For grouped failure times there is an as-
sumed continuous underlying hazard function in contrast to discrete failure time data
(Fahrmeir [13]) with an intrinsically discrete time variable, discrete hazards, survival
functions etc.

One of the primary reasons for grouping can be found in studies involving large
sample sizes such as epidemiologic studies (Breslow [6]). Such studies typically involve
the follow-up of large population groups over certain time periods to assess the cause
and rate of death and/or to compare death rates among different population groups.
Grouping data from such large sample sizes into tabular presentations (life tables)
often provides a convenient format for presenting and summarizing life information.
Also grouping could be done intentionally, e.g. to economize on data transmission
and storage, to reduce computation, to protect the privacy of individual records, or
to account for the limitations of a measurement instrument. Moreover, some large
data sets are publicly released only in grouped form, as discussed by Haitovsky (]19],
[20]). Some examples that illustrate such grouped survival data are: the American
Cancer Society study of 1,000,000 men and women (Hammond [18]) to determine the
dose-time-response relationships between smoking and lung cancer or heart disease
and the life span study of over 100,000 Japanese atom bomb survivors in Hiroshima
and Nagasaki (Beebe [4]).

Another important reason for grouping data is that it is often difficult or even
impossible to obtain exact life time, because ethical, physical or economic restrictions
in research design allow the subjects in the follow-up study to be monitored only
periodically. Thus, this type of study only provides the grouped information, i.e., the
exact failure time is unknown and the only available information is whether the event
of interest occurred between two inspection times. The following study illustrate
situations where periodic inspection is used: The National Labor Survey of Youth
(NLSY) study of time to weaning of breast-fed newborns in which 927 first-born
children of mothers who chose to breast feed their children were interviewed yearly.

Similar to continuous data in survival analysis, grouped survival data can involve
censored data (right censoring, left censoring or double censoring) and/or truncated
data. Moreover, the exact censoring or truncation times may be unknown for grouped
data. For example, in the study of time to weaning of breast fed newborns, some
infants are lost follow-up and some infants were withdrawn from the study with-
out being weaned. Also grouped survival data can involve covariates (explanatory
variables). Some parametric hazard models and the well-known Cox’s proportional
hazards model are often fitted to grouped survival data (Prentice and Gloeckler [37]).



The vast literature on grouped survival data involves: deriving the estimators of
the hazard function and survival function under nonparametric or parametric models,
test statistics for comparing the survival probabilities among different population
groups, and large sample properties for these estimators and test statistics. Most
estimates are derived based on maximum likelihood methods. Some references to
such studies will be given later. The Bayesian approach to analyzing grouped survival
data has also been studied in the literature (see Cornfield and Detre [8]; Johnson and
Christensen [27]).

Notation of Grouped Survival Data

Let time be partitioned into a fixed sequence of intervals 7,75, -, 7, with 7; =
(tj_1,tj] and 0 =ty < t; < --- < t;, < 00. For grouped failure time data the only
available information is:

n; = number of subjects entering 7; not having experienced the event,
d; = number of individuals experiencing the event in 7j,

w; = number of individuals lost to follow-up or withdrawn during 7;,
p; = number of individuals left truncated during 7j,

Y; = total time of individuals at risk during 7;.

Note that all ; = 0 when no left truncation occurs. Also, when the subjects are
monitored periodically, the total time at risk Y; is unknown. It is often approximated
by Y, ~ [n; — (d; + w;)/2](t; — tj_1) for right censored data.

Life Table

The life table is one of the oldest and most commonly used methods of presenting
lifetime data. It is a table for presenting and summarizing data, and estimating the
survival function, the probability density function and the hazard function along with
the variance of these estimators. For more details on the life table, see Gehan [17],
Breslow|[7] and Hoem [22].

Interval Censored Grouped Data

For the interval (doubly) censored grouped data, Turnbull ([40], [41]) proposed an
“self-consistency” procedure, developed by Efron [11], to estimate the survival func-
tion S(t). The Turnbull Estimator is a nonparametric maximum likelihood estimator
(NPMLE). Frydman [16] discussed derivation and asymptotic properties of the Turn-
bull Estimator. Sun [39] discussed some alternative approaches to maximizing the
NPMLE.



Log-Rank Test

Comparison of the survival probabilities with treatment groups or covariate strata in
the grouped data can be done through rank tests. In the continuous data case Fleming
and Harrington [14] studied a class of weighted log-rank tests. These weighted log-
rank tests can be extended to the grouped failure time data. The usual log-rank test
(or evenly weighted log-rank test) is most commonly and widely used in practice.
Here we discuss the grouped data version of the log-rank test. First, let’s consider
the two sample case. Let n;; and d;;, j = 1,--+,m,i = 1,2, be the number at risk at
begining of jth interval and observed failures in jth interval, respectively, in sample
it. Take n; and d; to be the corresponding values in the combined sample. The data
can be summarized as

Sample
Failure 1 2 Total
Yes dlj d2j dj
No ny; — dlj Noj; — dgj n; — dj
Total nij N2j n;

corresponding to the jth time interval. The grouped data based two sample log-rank
test can be computed as

0= {]f:l(dlj_Eu)}Q/{ji‘ﬁj},

where F,; and Vj; are the expected value and variance of d,;, given by

By=""0 and 1, =9 22(3»1%1) )
J g\

Under the hypothesis of Si(t) = Ss(t), the two-sample log-rank test statistic @) has
approximately the chi-squared distribution with 1 degree of freedom when the sample
sizes are moderately large for each sample.

We can extend the two-sample log-rank test to the k-sample comparison. The
k-sample log-rank test has a quadratic form with (d;; — Ey;) replaced by the corre-
sponding values from (k — 1) samples and with Vj; replaced by the corresponding
covariance matrix, where the (hl)th element is

dmn s . .
Gy = J:hy <5hl . %) (n; i)
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and 0p; is a Kronecker delta, i.e., 05, = 1 if h = [, and 0 otherwise.
Parametric Models and Regression Analysis

In survival analysis some parametric models have been studied extensively. The
common parametric distributions considered are Exponential, Gamma, Weibull, Log
Normal and Gompertz distributions. These parametric models are often fitted to
grouped data as well. The parameters are usually estimated by maximizing the
full (unconditional) likelihood or the conditional likelihood. That is the likelihood
function for the interval (¢,_,t;] conditional on surviving till ¢;_y. Many authors
have given grouped data version MLE, see Elandt-Johnson and Johnson [12], Lawless
[30] and Deddens and Koch [10]. Turnbull [42] studied a likelihood ratio statistic for
testing goodness of fit for grouped failure data with possible doubly censoring.

It is important to assess the effects of covariates that may be associated with
the lifetimes in many applications of survival analysis. The regression model for the
conditional hazard function A(t|z) of the failure time given covariate z could be used
to examine the covariate effects. Continuous covariates are often grouped into a fixed
number strata and the value for the strata is approximated by the midpoint of the
covariate in the stratum. For simplicity we consider a one dimensional covariate
case. The methods and results discussed here can be extended to multidimensional
cases. Let the cells into which the data are grouped be denoted C,; = 7, x Z;, where
Ti,...,Tp, and Zy,...,Z;, are the respective calendar periods (time intervals) and
covariate strata. Grouped failure time data consist of the total number of failures
(occurrence) and the total time at risk (exposure) in each cell C,;, given by d,; and
Y,;. In the literature, most early work has been done under the piecewise exponen-
tial model, i.e., the hazard function is assumed to be piecewise constant within each
grouping cell. The natural estimate of the unknown hazard rate \,; is 5\,7- =d,;/Y,;
(occurrence/exposure rate). Deddens and Koch [10] showed that the maximum likeli-
hood is approximately equivalent to maximizing the piecewise exponential likelihood
function

drj
L= H Arj {exp(—)\errj)}.
J

The occurrence/exposure rate estimator can also be obtained by solving the equations
of dlogL/o\,; = 0.

The counting process approach and martingale techniques are applicable in grouped
failure time data analysis. We assume that the counting process N;, where N;(t) is
the number of failures of the ith individual during time period [0, ¢], has intensity

Ai(t) = Yi(t)A(E, Zi(t)),



where Y;(t) is a predictable {0, 1}-valued process indicating that the ith individual is
at risk with Y;(¢) = 1, and Z;(t) is a predictable covariance process. The occurrence
and exposure in each cell C,; can be written as

Iy =Y /T I{Z(t) € T}Ni(t) and Yy =3 /T [{Z,(t) € T\ Yi(t)dt.

When the censoring processes are independent of the survival time, we can show that
M;(t) = Ny(t) — [5 Xi(u)du are local martingales. Under the piecewise constant model
(A(t, Z) = )\rja for (t, Z) € er),

drj Mrj Y;'j

j\r': = Ar' ’
A R

where M,; = Z/ I{Z,(t) € Z;}dM;(t) is the martingale part of d,;. Since each
~J1,

t € 7,, Y,; is not predictable, the martingale techniques are not applicable directly.
However, under the 7id cases and some mild conditions, we can show that there exists
a piecewise constant function f,; bounded away from zero such that n='Y}; converges
to f,; in probability. Then we can replace M,;/Y,; by M,;/nf.; with the difference
of op(1). It follows that

. M.
Arj = — + Ay +op(1),
n rj

and the predictable variation process of M,;/f,; is

<Mm'> _ MY
fri 5o

Therefore, 5\7-]' is an asymptotic unbiased estimator and the variance can be consis-
tently estimated by

d’l“j
(¥r;)%
For the general nonparametric model where the hazard function is unspecified, Hol-
ford [23] noted that this estimator is inconsistent unless the grouping becomes finer
as the sample size increases.
The useful models for many applications are the multiplicative and additive risk
model. The model equations are given by

6rj = Var(A,j) =

Arj = Ao exp(ﬁzj) and  A,; = Ao + Bz,

where )\, is the baseline hazard rate of the rth time period. The parameters A,
and 3 are readily estimated by the MLE. Berry [5] and Frome [15] provide explicit
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MLE for this approach. For the multiplicative risk model the hazard function can
be written as A,; = exp(a; + [(z;) which has a log-linear form. It is often called the
log linear piecewise constant model. Holford [24] derived the log likelihood for this
model:

L= apd.+> d;Bzj — > Yejexp(a, + 3z),
r ] r,J

where d,. = Zj;l d,; is the number of failures in the rth calendar period. Taking
derivatives of L with respect to o, and [ and setting them equal to zero, the MLE
estimator of /3 is given by solving the following equation:

>, Yrizj exp(Bz;)

Zidy; — .. = 0.
%: Y zr: 25 Yejexp(0z;)

As we discuss later, this MLE estimator of [ also can be obtained by maximizing the
grouped data version of Cox’s partial likelihood.

The more general models are: Cox’s proportional hazards model (Cox [9]) where
A(t,z) = Ao(t) exp(z), and Aalen’s additive risk model (Aalen [1]) where \(¢,z) =
Ao(t) + B(t)=.

Cox’s proportional hazards model has so far been the most popular model in sur-
vival analysis. The parameter estimator B is obtained by maximizing Cox’s partial
likelihood function. Andersen and Gill [3] provide an excellent proof that /n(f —
B0)-25N(0,V), where V=1 is consistently estimated by —n~'0U(3)/08 and U is the
partial likelihood score function U(3) = dlog L(3)/93. The grouped data based esti-
mator Bg can be obtained by maximizing the following approximation to the partial

likelihood:
Bz drj
Ly(3) =Tl ==
I r,j Ek Y;"keﬁzk
where the product is over the grouping cells, the sum is over the covariate strata,
and z; is the midpoint of the jth covariate stratum. This estimator has been studied
by Kalbfleisch and Prentice [28], Holford [23], Prentice and Gloeckler [37], Breslow
(6], Hoem [21], Selmer [38], and Huet and Kaddour [25]. It can be interpreted as
the maximum likelihood estimator in a Poisson regression model, as shown by Laird
and Olivier [29]. Under slightly stronger regularity conditions proposed in Andersen

and Gill [3], it can be shown that v/n(3, — Bo)—>N(0,V), when the time intervals
and covariate strata shrink at some suitable rate as the sample size increases. It is
important to be able to assess estimation bias caused by grouping and to correct
it if necessary. In the general grouped data analysis, A ‘Sheppard correction’ can
be used to reduce the bias to a higher order of the interval width, see Lindley [31].
McKeague and Zhang [36] obtained a Sheppard correction for Cox’s proportional



hazards model, provided a consistent estimator for Sheppard correction, and derived
the optimal rate of convergence for 3,. The grouped data based estimator of the
baseline hazard function, )y, is

3 25 drj

Ao(t) = for t € 7.
Ej Y;jeﬂgzj

Aalen’s additive risk model provides a useful and sometimes biologically more
plausible alternative to the Cox proportional hazards model. For continuous data,
Aalen proposed a least squares estimator for the cumulative hazard functions which
has been studied by Aalen ([1], [2]), Mau ([32], [33]), and McKeague [34]. McKeague
[35] and Huffer and McKeague [26] fit Aalen’s additive risk model to the grouped data
(when the covariates are observed for each individual and are non-time dependent),
and studied asymptotic results for the grouped data version of the least squares
estimator and weighted least squares estimator. The estimators can be generalized
to the more general grouped data setting where the only available information is d,;
and Y,; for each cell C,;. More work is needed.

Finally, fitting parametric and regression models to grouped failure time data is
based on d,; and Y, ;. As we discussed in the univariate case, Y,; may not be observable
in some applications. It is usually approximated by Y;; ~ (n,.;—(d.;+w.;)/2)l,, where
n,; is the number of individuals at risk at beginning of the time period 7, for the jth
covariate stratum, w,; is the number of individuals who withdrew in cell C,;, and [,
is the width of the time interval 7,. This approximation is based on the assumption
that, on the average, the individuals failed or withdrew at middle of the each time
period. However, in most applications, this assumption does not hold true. The bias
introduced by this approximation could be severe. Cautions must be taken when
grouping the data so that the number of grouping cells are sufficiently large (the
width of time periods and covariate strata are relative small), and each grouping cell
contains sufficient individuals at risk.
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TIED FAILURE TIMES

Tied failure times frequently occur in survival studies. Although theoretically a life-
time is a continuous variable, in practice it is often measured to a degree of fineness
due to measurement limitation, the way failure times are recorded, or the expense of
more accurate measurements may outweigh the value of added information. If the
number of ties are substantial, discrete failure time models may need to be consid-
ered. Therefore, discrete failure time methods or grouped data techniques such as life
tables should be used. However, if there are only a few ties, the regular procedures in
handling continuous data may be used with some adjustment for tied observations. In
the literature adjustment for ties has been proposed and studied for various statistical
procedures in survival analysis. See Miller [9], Lawless [8], Kalbfleisch and Prentice
6], Peto and Peto [10], Andersen et al [1], and Klein and Moeschberger [7]. Here we
will only discuss adjustment for ties for some common statistical procedures.
Consider the method of handling ties in the Kaplan-Meier or product-limit (PL)
estimator of the survival function. If only one individual fails (no ties are present)
at time ¢, then the factor for the single death in the PL estimator is (1 — 1/Y(¢))
where Y'(¢) counts the number of individuals at risk at time ¢—. For tied uncensored
observations, suppose d failures occur at time ¢. Split the times of the d failures
infinitesimally so that the factor for the d failures in the PL estimator is

(1—%)(1—%)---(1—@%1—%

If censored and uncensored observations are tied at time ¢, consider the uncensored
individuals as having failed just before the censored observations.
In the k-sample test, the weighted log rank test statistic is

Zin) = | 'K (s)dN(s) — / t K(s)?((j)) 0N (s).

for h = 1,2,---,(k — 1), where K is the weight function, N,(s) and Y} (s) are the
number of failures during time period [0, s] and number of individuals at risk prior to
time s for hth sample, respectively, and N. = >, N,,,Y =, Y,. The covariance of
(Zn(t), Z;(t)) may be estimated consistently by

oni = | t K2(s)1;f((85)) <5hj - %) AN (s),

where 65, is a Kronecker delta, i.e., 65y = 1 if h =, and 0 otherwise. In the presence
of tied observations, the covariance of (Z(t), Z;(t)) needs to be adjusted to

st Ya(s) Yi(s)\ Y(s) — AN(s)
b= [0t (i ) Sy
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Clearly, when there are no tied observations, d; and éhj coincide.

Cox’s partial likelihood has been commonly used to estimate the coefficients, 3,
in Cox’s proportional hazards model. Let t; < ty < --- < t; be the k ordered event
times. Let the set D, consist of the d; individuals who failed at the time ¢, and R;
be the risk set prior to ¢;. Denote s; = 3 ,cp. 2;. If there are ties among event times,
the following adjusted partial likelihoods have been proposed:

Breslow [2] suggests a partial likelihood of

k exp(8's;)
H 2 -
i=1 [Zlen exp(ﬂ )]

Efron [5] proposed an alternative partial likelihood of

1:[ P [ exp(ﬁs')
= H [Z exp ,@Zl di

j=1 [IER;

Zexp,@zl}.

leD.

The third partial likelihood due to Cox [3] is based on a discrete time hazard rate
model. The discrete logistic likelihood is

exp(8's;)

L =
+(8) i1 2.qeQ; exp(,@’s;)’

where Q; is the set of all subsets of d; individuals who could be selected from the risk

set R; and s = quj
7=1
The fourth alternative partial likelihood is (see DeLong et al [4])

Lm):ﬁ{ /fﬁ[l—exp e )t)]exp<—t>dt},

i=1 j=1 2ier: €Xp Bz

where R} = R;\D; is the set of individuals whose event or censored times exceed {;
or whose censored times are equal to ¢;. It is often called exact likelihood.

Note that when the number of ties is small, Breslow’s and Efron’s likelihoods are
quite close. Of course, if no ties occur at the event times, all four likelihood functions
reduce to the regular Cox’s partial likelihood.
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