Program Overview and Structure

Cheryl Stucky, PhD, Program Director, with an NDP Student

Throughout the course of study, students will interact with a large number of faculty, students and postdoctoral trainees engaged in high-quality research in the neurosciences. The goal is to provide each student with the basics of modern neuroscience and then allow customization of a program of course work that best meets his/her needs.

Program Benefits

  • Small class size of 4-6 students
  • Direct mentorship the first year
  • Full stipend covers cost of living and tuition (2017-2018 = $29,136)
  • Full health care benefits
  • No teaching responsibilities (though opportunities exist for those who are interested)

Program Summary

During the first year, students spend their mornings taking fundamental courses in molecular, cellular and systems neuroscience. In the afternoons, students begin doing hands-on research through 9 week rotations in 3-4 laboratories of their choosing. By the end of the first year, they select a lab and mentor for their thesis work. In years 2-3, students take advanced courses that are tailored to their research interests and thesis goals. Students also take a comprehensive qualifier exam that includes writing an NIH-style innovative research proposal.

Throughout all years, students have the opportunity to present at regional, national and even international neuroscience meetings, and often receive competitive internal and external travel awards. Students have the opportunity to gain teaching experience by assisting in graduate and medical neuroscience courses at MCW. On average, students defend their dissertation work in 51/2 years from beginning the program.

Our NDP alumni advance to exciting careers that include postdoctoral fellowships at premier research institutes, pharmaceutical companies and faculty positions at research and teaching colleges.


First Year

Trigeminal Sensory Neurons-Zebrafish
  • Attend weekly Journal Club to discuss primary literature with faculty member.
  • Rotate through labs of Neuroscience faculty to gain hands-on lab experience and explore the variety of research opportunities.
  • Select a research mentor and join the graduate program of the mentor's department after completion of the first year.
  • Course work includes Biochemistry of the Cell, Molecular and Cellular Biology, Fundamentals of Neuroscience and Mechanisms of Cellular Signaling or Molecular Genetics.


Second Year

Human iPSC-Derived Motor Neurons
  • Complete a mock grant proposal that serves as the qualifying exam.
  • Strong emphasis is placed on completion of dissertation research on a state-of-the-art problem of current importance in neuroscience.
  • Choose from elective courses such as Biology of Vision, Physiological Genomics, Cellular Signal Transduction, Advanced Systems Neuroscience, Advanced Cell Biology, Cellular Molecular Neurobiology and Classical and Molecular Genetics


Third Year and beyond

Human iPSC-Derived Astrocytes
  • During the subsequent years of study, emphasis will be placed on advanced training in selected areas of neuroscience in conjunction with dissertation research in a problem of current importance in the neurosciences.
  • Choose from elective courses such as Biology of Vision, Physiological Genomics, Cellular Signal Transduction, Advanced Systems Neuroscience, Advanced Cell Biology, Cellular Molecular Neurobiology and Classical and Molecular Genetics


Listed below are the required and elective courses most often taken by our NDP students.

There are many additional courses offered by other departments at the Medical College of Wisconsin that can be taken by students in the Interdisciplinary Neuroscience Program depending upon their research interests. In addition, graduate courses offered at Marquette University or University of Wisconsin Milwaukee can be taken for credit to satisfy some elective requirements; more information is available from the MCW Graduate School of Biomedical Sciences.

Biochemistry of the Cell

Course Number: 16202
Number of Credits: 4

This interdisciplinary course provides students with a solid foundation in the understanding of the structure and function of proteins. This knowledge is then applied to proteins involved in various metabolic pathways to understand the manner in which these pathways are organized and controlled. The material is presented primarily in lecture format, interspersed with occasional discussion sessions.

Molecular and Cellular Biology

Course Number:16244
Number of Credits: 4

This interdisciplinary course provides students with a solid foundation in the areas of gene expression and cell biology. The material is presented primarily in lecture format, but a significant number of discussion sections are also included.

Fundamentals of Neuroscience

Course Number:12211
Number of Credits: 4

This course follows a multidisciplinary approach to current knowledge about the structural and functional properties of the nervous system. The mechanisms of the nervous system are described at the molecular, cellular, and multi-cellular levels. The course includes both lectures and laboratory sessions. The purpose of this course is to introduce PhD students to the anatomy and function of the human nervous system.

Mechanisms of Cellular Signaling

Course Number: 16250
Number of Credits: 4

This interdisciplinary course provides first-year graduate students with a foundation in cellular signal transduction. The course has three sections; in the first, students learn the basic building blocks of signaling, including ligands, receptors and adaptor proteins; in the second section, students learn about representative signaling cascades; and in the third section, students consider signaling in the context of cellular or tissue biology. The material is presented in lectures, primary paper discussions and in open-ended discussion sessions.

Classical and Molecular Genetics

Course Number: 16252
Number of Credits: 4

This interdisciplinary course provides students with a foundation in classical and molecular genetics, model systems genetics, the replication, repair and recombination of the genetic material, developmental biology, cancer, and genomics. The material is presented primarily in lecture format, but a significant number of discussion sections are also included.

Biology of Vision

Course Number: 31257
Number of Credits: 3

This lecture/discussion course explores the functional organization and development of the visual system as revealed by the use of a variety of anatomical, cell biological, genetic, physiological and behavioral methods. It is designed for students who wish to gain a basic understanding of the biological basis for vision and to share in the excitement of the latest developments in this field. Topics include: Development of the eye and visual system, fundamental principles of regulated gene expression, the cell biology of the photoreceptors and retina, phototransduction and neural processing in the retina, functional architecture of retina and visual system, the anatomy, physiology and perceptual significance of parallel pathways.

Physiological Genomes

Course Number: 08230
Number of Credits: 5

This course will cover topics in Physiological Genomics at an advanced level emphasizing the tools and techniques that are available to investigators exploring the relationship between genotype and phenotype. Material will be selected to emphasize high throughput screening and Bioinformatics techniques. Specific examples of applications of physiological genomics to important research problems will be discussed. Students will acquire the expertise required to develop a research proposal and will participate in a mock study section to witness the process by which grants are reviewed.

Essential Physiological Genomics

Course Number: 08229
Number of Credits: 2

This course covers genome sequence, functional genomic analysis, genome and gene manipulation, and grant writing. The students will learn about the latest advances in the field of physiological genomics, how to apply genomic approaches to study complex physiological problems and how to develop a grant proposal.

Cellular Signal Transduction

Course Number: 07224
Number of Credits: 3

This course provides an in-depth presentation of mechanisms of cellular signaling at a level designed for doctoral students in the biomedical sciences. The emphasis is on receptors, second messenger systems, G proteins and signal transduction.

Advanced Systems Neuroscience

Course Number: 12221
Number of Credits: 3

This course covers seven selected areas in systems neuroscience, including: neuronal information processing and control systems, cerebral hemodynamics, metabolism and neuronal activity, sensory systems, motor systems, attentional systems, learning and memory and motivational systems. Some lectures introducing fundamental concepts and current research topics are presented but learning occurs primarily through readings and discussions.

Advanced Cell Biology

Course Number: 31250
Number of Credits: 3

Lectures and readings in the renewal, differentiation, communication, adhesion, secretion, motility, gene activity, and mitochondrial dynamics of eukaryotic cells.

Cellular and Molecular Neurobiology

Course Number: 12237
Number of Credits: 3

Readings and discussion in cellular, molecular, and developmental neurobiology. Among the topics covered in this course are ion channels and the ionic basis of potentials; mechanisms of synaptic transmission; neurotransmitter receptors and their receptors; sensory signal transduction and neural development.

Journal Club

Course Number: 12298
Number of Credits: 1

Weekly readings will be selected from both contemporary and historical literature in neuroscience. Informal discussions will include participation from both neuroscience faculty and students.

Contact Us

(414) 955-4402
(414) 955-6555 - Fax

Graduate School of Biomedical Sciences
8701 Watertown Plank Road
Milwaukee, WI 53226