Jennifer Strande Lab
Jennifer Strande, MD, PhD
Principal Investigator
Associate Professor, Department of Medicine
jstrande@mcw.edu
We study heart disease at varying levels of biological complexity including patients, animal models and individual heart cells to obtain insights into disease mechanisms. We are currently investigating the cellular and molecular mechanisms that cause cardiomyopathy in patients with muscular dystrophy.
Melanie Gartz, MS, MHS
Research Technologist II
mreiter@mcw.edu
Our laboratory is interested in understanding the mechanisms underlying cardiomyopathy, a leading cause of death in patients with Duchenne and Becker muscular dystrophy. Our model system to investigate this phenomenon uses iPS cells differentiated into cardiomyocytes that contain patient specific dystrophin mutations. My role in the laboratory is to maintain our iPS lines and differentiate them into cardiomyocytes for experimentation. Furthermore, I have been investigating the factors contributing to oxidative stress in dystrophic iPS derived cardiomyocytes in order to lead to greater understanding of this unique cardiomyopathy.
Leah Thomas
Research Technologist I
lethomas@mcw.edu
My primary role within the lab is to provide support for various projects throughout the lab. Currently, my focus is developing in vitro model systems to investigate dystrophic cardiomyopathy and cellular senescence. Techniques I use to support the model systems are maintenance of iPSCs and differentiating them into cardiac and endothelial cells, CRISPR Cas-9 gene editing, and animal behavior studies.
Muhammad Zeeshan Afzal, BPharm, PhD
Postdoctoral Fellow
mafzal@mcw.edu
Dystrophic cardiomyopathy manifested in muscular dystrophy patients is due to mutations of the dystrophin gene, resulting in defective cytoskeletal protein involved in regulation of stretch associated cellular support. My research involves establishing bio-bank of dystrophic patient samples; reprograming of dystrophic patient derived somatic cells into induced pluripotent stem (iPS) cells; and their differentiation into cardiomyocytes. My further investigations focus undertaking fundamental assays to elucidate molecular mechanisms regulating oxidative stress in dystrophic cardiomyocytes and to study their cellular bioenergetics. Our efforts would help establishing basis to understand the oxidative mechanisms contributing towards dystrophic cardiomyopathy.
Recent Publications
-
Influence of microRNAs and exosomes in muscle health and diseases.
(Lam NT, Gartz M, Thomas L, Haberman M, Strande JL.) J Muscle Res Cell Motil. 2019 Sep 28.
-
(Hayes H, Patz J, Corbett J, Afzal MZ, Strande J, Kindel TL.) Surg Obes Relat Dis. 2019 Jun;15(6):837-842.
-
Mapping genetic modifiers of radiation-induced cardiotoxicity to rat chromosome 3.
(Schlaak RA, Frei A, Schottstaedt AM, Tsaih SW, Fish BL, Harmann L, Liu Q, Gasperetti T, Medhora M, North PE, Strande JL, Sun Y, Rui H, Flister MJ, Bergom C.) Am J Physiol Heart Circ Physiol. 2019 Jun 01;316(6):H1267-H1280.
-
(Kindel TL, Foster T, Harmann L, Strande J.) J Card Fail. 2019 May;25(5):372-379.
-
(Jacobs ER, Narayanan J, Fish BL, Gao F, Harmann LM, Bergom C, Gasperetti T, Strande JL, Medhora M.) Health Phys. 2019 Apr;116(4):558-565.
-
(Gartz M, Darlington A, Afzal MZ, Strande JL.) Sci Rep. 2018 11 08;8(1):16519.
-
Examining the Paracrine Effects of Exosomes in Cardiovascular Disease and Repair.
(Gartz M, Strande JL.) J Am Heart Assoc. 2018 06 01;7(11).
-
(Krishnan B, Massilamany C, Basavalingappa RH, Gangaplara A, Rajasekaran RA, Afzal MZ, Khalilzad-Sharghi V, Zhou Y, Riethoven JJ, Nandi SS, Mishra PK, Sobel RA, Strande JL, Steffen D, Reddy J.) J Immunol. 2018 01 15;200(2):523-537.
-
(Kindel TL, Strande JL.) Surg Obes Relat Dis. 2018 01;14(1):117-122.
-
(Krishnan B, Massilamany C, Basavalingappa RH, Gangaplara A, Kang G, Li Q, Uzal FA, Strande JL, Delhon GA, Riethoven JJ, Steffen D, Reddy J.) Immun Inflamm Dis. 2017 12;5(4):421-434.
-
(Basavalingappa RH, Massilamany C, Krishnan B, Gangaplara A, Rajasekaran RA, Afzal MZ, Riethoven JJ, Strande JL, Steffen D, Reddy J.) Front Immunol. 2017;8:1567.
-
Generation of human iPSCs from urine derived cells of a non-affected control subject.
(Afzal MZ, Gartz M, Klyachko EA, Khan SS, Shah SJ, Gupta S, Shapiro AD, Vaughan DE, Strande JL.) Stem Cell Res. 2017 01;18:33-36.