Research Collaborate Lab Bench
Jong-In Park

Jong-In Park, PhD



  • Biochemistry
    BSB 357

Contact Information


BA and MBioch, Yonsei University, Seoul, Korea
PhD, University of New South Wales, Sydney, Australia, 2000


Dr. Park earned a PhD in Biochemistry and Molecular Genetics from the University of New South Wales, Sydney, Australia in 2000 for studies in Ras pathway-mediated stress responses.& His postdoctoral training in Cancer Biology was completed at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University in 2005. Previously, he earned Bachelor’s and Master’s degrees in Biochemistry from Yonsei University, Seoul, Korea, and worked for the pharmaceutical branch of SAMSUNG, Inc. He joined the faculty of the Biochemistry Department at the Medical College of Wisconsin in 2006.

Dr. Park’s current basic cancer research programs are supported by the NIH-National Cancer Institute and the American Cancer Society (ACS). He also participates in clinical cancer research by serving the NCI-MATCH Precision Medicine Cancer Trial as the Translational Chair of the Dabrafenib & Trametinib combination therapy arm, which targets BRAF-driven cancer. He is currently an ACS Research Scholar and a member of the ACS MEN2 Thyroid Cancer Consortium.

Research Interests

Proliferative programs of normal mammalian cells are interfaced with a variety of, so called, “innate tumor-suppressive mechanisms” that can trigger growth arrest or cell death in response to aberrant cell proliferation signals such as oncogenic mutations. Therefore, for carcinogenesis to occur, these mechanisms must be inactivated (A model is depicted at right). This inactivation usually requires reprogramming of signaling and metabolic pathways. parksignalingmodelVery intriguingly, certain oncogene-associated tumor suppressive mechanisms can be reactivated in cancer, providing a rationale for the design of a strategy to trigger “synthetic lethality” in cancer. The primary goal of our research is to understand the molecular mechanisms underlying these events and to translate the knowledge into an advanced therapeutic strategy.

Our current research focuses include:

Investigating the role of mortalin/GRP75/HSPA9 in Ras/Raf-transformed cancer. The Ras and Raf families of oncogenes have been known for decades as transforming genes, and activation of the Raf/MEK/ERK pathway is a central signature of many epithelial cancers. However, paradoxically, aberrant activation of Ras or Raf elicits growth inhibitory effects, mainly characterized by cell cycle arrest and senescence, in a variety of cell types and in vivo. These responses are appreciated as innate tumor defense mechanisms against Ras- and Raf-mediated tumorigenesis. We recently demonstrated that mortalin, a mitochondrial molecular chaperone often upregulated in cancers, can determine cell fate in the face of oncogenic Ras/Raf mutations. Importantly, mortalin depletion or inhibition reactivated the tumor suppressive mechanisms associated with Raf/MEK/ERK in cancer cells. Current studies, supported by the NIH/NCI, focus on further elucidating the molecular and biochemical mechanisms underlying mortalin-regulated signaling and metabolic pathways. Moreover, we evaluate therapeutic potential of small molecule inhibitors relevant in this context.

Investigating oncogenic signaling pathways and mitochondrial metabolism in thyroid cancer. Somatic as well as inherited mutations in the RET receptor tyrosine kinase are a key etiological factor for thyroid cancer. Further, inherited RET mutations are an important prognostic marker for the multiple endocrine neoplasia type 2 (MEN2) syndrome, wherein medullary thyroid cancer is a key pathological presentation. As a member of the American Cancer Society MEN2 consortium, we study the underlying molecular and biochemical mechanisms altered in thyroid cancer. We recently demonstrated that metabolic reprogramming in mitochondria is critical for medullary thyroid cancer cell survival and RET expression, thus proposing mitochondria as a potential therapeutic target for this tumor. Our current research further evaluates therapeutic potential of targeting mitochondrial metabolism in thyroid cancer.

Participation in the NCI-MATCH Precision Medicine Cancer Trial. This clinical trial is a “genotype to phenotype” phase II study. An important goal of this study is to identify the features of various tumor types with the same mutation that cause them to either respond to or resist treatment with a targeted therapy. More information is available at the NCI-Molecular Analysis for Therapy Choice (NCI-MATCH) Trial Website.


  • Mortalin depletion induces MEK/ERK-dependent and ANT/CypD-mediated death in vemurafenib-resistant B-RafV600E melanoma cells.

    (Wu PK, Hong SK, Park JI.) Cancer Lett. 2021 Apr 01;502:25-33 PMID: 33440231 PMCID: PMC7897271 SCOPUS ID: 2-s2.0-85099283545 01/14/2021

  • Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    (Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, Agrewala JN, Agrotis A, Aguilar PV, Ahmad ST, Ahmed ZM, Ahumada-Castro U, Aits S, Aizawa S, Akkoc Y, Akoumianaki T, Akpinar HA, Al-Abd AM, Al-Akra L, Al-Gharaibeh A, Alaoui-Jamali MA, Alberti S, Alcocer-Gómez E, Alessandri C, Ali M, Alim Al-Bari MA, Aliwaini S, Alizadeh J, Almacellas E, Almasan A, Alonso A, Alonso GD, Altan-Bonnet N, Altieri DC, Álvarez ÉMC, Alves S, Alves da Costa C, Alzaharna MM, Amadio M, Amantini C, Amaral C, Ambrosio S, Amer AO, Ammanathan V, An Z, Andersen SU, Andrabi SA, Andrade-Silva M, Andres AM, Angelini S, Ann D, Anozie UC, Ansari MY, Antas P, Antebi A, Antón Z, Anwar T, Apetoh L, Apostolova N, Araki T, Araki Y, Arasaki K, Araújo WL, Araya J, Arden C, Arévalo MA, Arguelles S, Arias E, Arikkath J, Arimoto H, Ariosa AR, Armstrong-James D, Arnauné-Pelloquin L, Aroca A, Arroyo DS, Arsov I, Artero R, Asaro DML, Aschner M, Ashrafizadeh M, Ashur-Fabian O, Atanasov AG, Au AK, Auberger P, Auner HW, Aurelian L, Autelli R, Avagliano L, Ávalos Y, Aveic S, Aveleira CA, Avin-Wittenberg T, Aydin Y, Ayton S, Ayyadevara S, Azzopardi M, Baba M, Backer JM, Backues SK, Bae DH, Bae ON, Bae SH, Baehrecke EH, Baek A, Baek SH, Baek SH, Bagetta G, Bagniewska-Zadworna A, Bai H, Bai J, Bai X, Bai Y, Bairagi N, Baksi S, Balbi T, Baldari CT, Balduini W, Ballabio A, Ballester M, Balazadeh S, Balzan R, Bandopadhyay R, Banerjee S, Banerjee S, Bánréti Á, Bao Y, Baptista MS, Baracca A, Barbati C, Bargiela A, Barilà D, Barlow PG, Barmada SJ, Barreiro E, Barreto GE, Bartek J, Bartel B, Bartolome A, Barve GR, Basagoudanavar SH, Bassham DC, Bast RC Jr, Basu A, Batoko H, Batten I, Baulieu EE, Baumgarner BL, Bayry J, Beale R, Beau I, Beaumatin F, Bechara LRG, Beck GR Jr, Beers MF, Begun J, Behrends C, Behrens GMN, Bei R, Bejarano E, Bel S, Behl C, Belaid A, Belgareh-Touzé N, Bellarosa C, Belleudi F, Belló Pérez M, Bello-Morales R, Beltran JSO, Beltran S, Benbrook DM, Bendorius M, Benitez BA, Benito-Cuesta I, Bensalem J, Berchtold MW, Berezowska S, Bergamaschi D, Bergami M, Bergmann A, Berliocchi L, Berlioz-Torrent C, Bernard A, Berthoux L, Besirli CG, Besteiro S, Betin VM, Beyaert R, Bezbradica JS, Bhaskar K, Bhatia-Kissova I, Bhattacharya R, Bhattacharya S, Bhattacharyya S, Bhuiyan MS, Bhutia SK, Bi L, Bi X, Biden TJ, Bijian K, Billes VA, Binart N, Bincoletto C, Birgisdottir AB, Bjorkoy G, Blanco G, Blas-Garcia A, Blasiak J, Blomgran R, Blomgren K, Blum JS, Boada-Romero E, Boban M, Boesze-Battaglia K, Boeuf P, Boland B, Bomont P, Bonaldo P, Bonam SR, Bonfili L, Bonifacino JS, Boone BA, Bootman MD, Bordi M, Borner C, Bornhauser BC, Borthakur G, Bosch J, Bose S, Botana LM, Botas J, Boulanger CM, Boulton ME, Bourdenx M, Bourgeois B, Bourke NM, Bousquet G, Boya P, Bozhkov PV, Bozi LHM, Bozkurt TO, Brackney DE, Brandts CH, Braun RJ, Braus GH, Bravo-Sagua R, Bravo-San Pedro JM, Brest P, Bringer MA, Briones-Herrera A, Broaddus VC, Brodersen P, Brodsky JL, Brody SL, Bronson PG, Bronstein JM, Brown CN, Brown RE, Brum PC, Brumell JH, Brunetti-Pierri N, Bruno D, Bryson-Richardson RJ, Bucci C, Buchrieser C, Bueno M, Buitrago-Molina LE, Buraschi S, Buch S, Buchan JR, Buckingham EM, Budak H, Budini M, Bultynck G, Burada F, Burgoyne JR, Burón MI, Bustos V, Büttner S, Butturini E, Byrd A, Cabas I, Cabrera-Benitez S, Cadwell K, Cai J, Cai L, Cai Q, Cairó M, Calbet JA, Caldwell GA, Caldwell KA, Call JA, Calvani R, Calvo AC, Calvo-Rubio Barrera M, Camara NO, Camonis JH, Camougrand N, Campanella M, Campbell EM, Campbell-Valois FX, Campello S, Campesi I, Campos JC, Camuzard O, Cancino J, Candido de Almeida D, Canesi L, Caniggia I, Canonico B, Cantí C, Cao B, Caraglia M, Caramés B, Carchman EH, Cardenal-Muñoz E, Cardenas C, Cardenas L, Cardoso SM, Carew JS, Carle GF, Carleton G, Carloni S, Carmo.) Autophagy. 2021 Jan;17(1):1-382 PMID: 33634751 PMCID: PMC7996087 SCOPUS ID: 2-s2.0-85102619204 02/27/2021

  • Dabrafenib and Trametinib in Patients With Tumors With BRAFV600E Mutations: Results of the NCI-MATCH Trial Subprotocol H.

    (Salama AKS, Li S, Macrae ER, Park JI, Mitchell EP, Zwiebel JA, Chen HX, Gray RJ, McShane LM, Rubinstein LV, Patton D, Williams PM, Hamilton SR, Armstrong DK, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT.) J Clin Oncol. 2020 11 20;38(33):3895-3904 PMID: 32758030 PMCID: PMC7676884 08/08/2020

  • Anticholestatic Effect of Bardoxolone Methyl on Hepatic Ischemia-reperfusion Injury in Rats.

    (Kim J, Hagen CE, Kumar SN, Park JI, Zimmerman MA, Hong JC.) Transplant Direct. 2020 Aug;6(8):e584 PMID: 32766432 PMCID: PMC7371100 SCOPUS ID: 2-s2.0-85094858644 08/09/2020

  • Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway.

    (Wu PK, Becker A, Park JI.) Int J Mol Sci. 2020 Jul 30;21(15) PMID: 32751750 PMCID: PMC7432891 SCOPUS ID: 2-s2.0-85089131301 08/06/2020

  • Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability.

    (Wu PK, Hong SK, Starenki D, Oshima K, Shao H, Gestwicki JE, Tsai S, Park JI.) Oncogene. 2020 05;39(21):4257-4270 PMID: 32291414 PMCID: PMC7244387 SCOPUS ID: 2-s2.0-85083767959 04/16/2020

  • Mortalin (HSPA9) facilitates BRAF-mutant tumor cell survival by suppressing ANT3-mediated mitochondrial membrane permeability.

    (Wu PK, Hong SK, Chen W, Becker AE, Gundry RL, Lin CW, Shao H, Gestwicki JE, Park JI.) Sci Signal. 2020 03 10;13(622) PMID: 32156782 PMCID: PMC7099430 SCOPUS ID: 2-s2.0-85081677231 03/12/2020

  • Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells.

    (Starenki D, Sosonkina N, Hong SK, Lloyd RV, Park JI.) Int J Mol Sci. 2019 Apr 26;20(9) PMID: 31027376 PMCID: PMC6540051 SCOPUS ID: 2-s2.0-85065295769 04/28/2019

  • Treatment of Cells and Tissues with Chromate Maximizes Mitochondrial 2Fe2S EPR Signals.

    (Antholine WE, Vasquez-Vivar J, Quirk BJ, Whelan HT, Wu PK, Park JI, Myers CR.) Int J Mol Sci. 2019 Mar 06;20(5) PMID: 30845710 PMCID: PMC6429069 SCOPUS ID: 2-s2.0-85062628835 03/09/2019

  • A cellular threshold for active ERK1/2 levels determines Raf/MEK/ERK-mediated growth arrest versus death responses.

    (Hong SK, Wu PK, Park JI.) Cell Signal. 2018 Jan;42:11-20 PMID: 28986121 PMCID: PMC5732048 SCOPUS ID: 2-s2.0-85031106212 10/08/2017

  • Steady-State Levels of Phosphorylated Mitogen-Activated Protein Kinase Kinase 1/2 Determined by Mortalin/HSPA9 and Protein Phosphatase 1 Alpha in KRAS and BRAF Tumor Cells.

    (Wu PK, Hong SK, Park JI.) Mol Cell Biol. 2017 Sep 15;37(18) PMID: 28674184 PMCID: PMC5574043 SCOPUS ID: 2-s2.0-85028363255 07/05/2017

  • Vandetanib and cabozantinib potentiate mitochondria-targeted agents to suppress medullary thyroid carcinoma cells.

    (Starenki D, Hong SK, Wu PK, Park JI.) Cancer Biol Ther. 2017 Jul 03;18(7):473-483 PMID: 28475408 PMCID: PMC5639831 SCOPUS ID: 2-s2.0-85020693671 05/06/2017