John A. Pulikkan, PhD
Assistant Professor
Locations
- Cell Biology, Neurobiology and Anatomy
Contact Information
Education
Postdoctoral, University of Massachusetts Medical School, MA
Biography
Dr. Pulikkan completed his PhD from Ludwig Maximilian University of Munich, Germany. His work elucidated the first direct mechanism by which C/EBPα regulates cell cycle control in hematopoiesis and provided strong evidence that restoration of microRNA levels could be a novel therapeutic avenue in cancer.
For his post-doctoral research, Dr. Pulikkan joined the University of Massachusetts Medical School. He co-discovered AI-10-49, a small molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC, which is associated with inv(16) leukemia. This work provided proof-of-principle that protein-protein interactions and oncogenic transcription factors, so-called “undruggable” targets in cancer therapy can be effectively targeted by small molecule inhibitors. Currently, AI-10-49 is under development as an anti-leukemic drug. In a follow-up study, Dr. Pulikkan showed that pharmacologic inhibition of the CBFβ-SMMHC/RUNX1 interaction by AI-10-49 leads to RUNX1-mediated changes in MYC enhancer chromatin dynamics, which in turn results in inhibition of the MYC transcriptional program and apoptosis. This study brought novel insights on how cancer driver mutations ‘hijack’ chromatin dynamics through deregulating the SWI/SNF chromatin remodeling complex/ Polycomb repressive complex (PRC) axis.
Dr. Pulikkan’s outstanding achievements during his post-doctoral research have been recognized by several awards, including the American Society of Hematology (ASH) Scholar Award, Alex's Lemonade Stand Foundation Young Investigator Award, Lauri Strauss Leukemia Foundation Discovery Grant and UMASS Cancer Center researcher award. During his doctoral research Dr. Pulikkan was awarded the German José Carreras Leukemia Foundation Research Fellowship, Wilhelm Roux Research Scholarship and Daimler Benz Foundation Research Fellowship.
Dr. Pulikkan’s laboratory focuses on deciphering the interplay between transcription factors and chromatin dynamics in normal and malignant hematopoietic stem cells, and understanding the function of non-coding RNAs in myeloid development and leukemia. The long-term goal of the Pulikkan lab is to identify and characterize novel therapeutic targets, and translate them to the clinic for leukemia treatment.
Research Interests
Chromatin dynamics and gene regulation in normal and malignant hematopoiesis
Acute myeloid leukemia (AML) and several hematological malignancies arise from acquisition of multiple stepwise genetic and epigenetic changes in hematopoietic stem and progenitor cells. Understanding the regulatory pathways that are deregulated in hematopoietic stem and progenitor cells is important to better understand the development of leukemia and to design novel therapeutic strategies for the treatment of leukemia. With that broad focus in mind, our lab applies genetic, epigenetic and biochemical approaches in genetically modified mouse models, humanized mouse models and human primary leukemic cells. Our research focus on three areas:
- Interplay between transcription factors and chromatin dynamics in normal and malignant HSCs
The development of chromosome conformation capture technology has revolutionized our understanding of long-range enhancer-promoter interactions and how these interactions are deregulated in multiple diseases. However, our understanding of chromatin structure and how transcription factors regulate higher-order genome architecture is limited. We are exploring the mechanisms by which transcription factors regulate chromatin dynamics in normal and malignant HSCs, and the implications of chromosomal rearrangements observed in hematological malignancies in topologically associated domains (TAD) architecture and gene expression. - Transcriptional deregulation in AML
Mutations in transcription factors have long been shown to be central in tumorigenesis. Our lab is interested in understanding transcriptional regulation of myeloid differentiation and how this is altered in AML. In particular, we are studying deregulation of transcription factors C/EBPα and core-binding factors, CBFs (consisting of RUNX and CBFβ proteins) in AML. We are investigating the preleukemic molecular events in AML with CEBPA mutations and chromosomally rearranged RUNX1/ CBFβ. - Non-coding RNA function in hematopoiesis and leukemia
While around 76% of the human genome is transcribed into RNA, only 2% of the genome is translated to proteins. Recent findings in RNA biology made a paradigm shift in our understanding of RNA function beyond acting as templates for protein synthesis. An emerging theme in gene regulation is the central role played by long non-coding RNAs (lncRNAs). We are interested in understanding the functional relevance of deregulated lncRNAs in AML with altered CBF and C/EBPα activity and the therapeutic relevance of targeting lncRNAs in AML treatment.
Publications
-
N-MYC regulates cell survival via eIF4G1 in inv(16) acute myeloid leukemia.
(Peramangalam PS, Surapally S, Veltri AJ, Zheng S, Burns R, Zhu N, Rao S, Muller-Tidow C, Bushweller JH, Pulikkan JA.) Sci Adv. 2024 Mar;10(9):eadh8493 PMID: 38416825 PMCID: PMC10901375 SCOPUS ID: 2-s2.0-85186742316 02/28/2024
-
Core-binding factor fusion downregulation of ADAR2 RNA editing contributes to AML leukemogenesis.
(Guo M, Chan THM, Zhou Q, An O, Li Y, Song Y, Tan ZH, Ng VHE, Peramangalam PS, Tan ZQ, Cao X, Iwanaga E, Matsuoka M, Ooi MGM, Jen WY, Koh LP, Chan E, Tan LK, Goh Y, Wang W, Koh BTH, Chun CM, Fullwood MJ, Chng WJ, Osato M, Pulikkan JA, Yang H, Chen L, Tenen DG.) Blood. 2023 Jun 22;141(25):3078-3090 PMID: 36796022 02/17/2023
-
Core-binding factor leukemia hijacks the T-cell-prone PU.1 antisense promoter.
(van der Kouwe E, Heller G, Czibere A, Pulikkan JA, Agreiter C, Castilla LH, Delwel R, Di Ruscio A, Ebralidze AK, Forte M, Grebien F, Heyes E, Kazianka L, Klinger J, Kornauth C, Le T, Lind K, Barbosa IAM, Pemovska T, Pichler A, Schmolke AS, Schweicker CM, Sill H, Sperr WR, Spittler A, Surapally S, Trinh BQ, Valent P, Vanura K, Welner RS, Zuber J, Tenen DG, Staber PB.) Blood. 2021 Oct 14;138(15):1345-1358 PMID: 34010414 PMCID: PMC8525333 05/20/2021
-
Emerging therapies for inv(16) AML.
(Surapally S, Tenen DG, Pulikkan JA.) Blood. 2021 May 13;137(19):2579-2584 PMID: 33821975 PMCID: PMC8120144 04/07/2021
-
DOT1L inhibitors block abnormal self-renewal induced by cohesin loss.
(Heimbruch KE, Fisher JB, Stelloh CT, Phillips E, Reimer MH Jr, Wargolet AJ, Meyer AE, Pulakanti K, Viny AD, Loppnow JJ, Levine RL, Pulikkan JA, Zhu N, Rao S.) Sci Rep. 2021 Mar 31;11(1):7288 PMID: 33790356 PMCID: PMC8012605 SCOPUS ID: 2-s2.0-85103745135 04/02/2021
-
(Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J, O'Hagan K, Ou J, Muller-Tidow C, Wolfe SA, Zhu LJ, Dekker J, Bushweller JH, Castilla LH.) Cell. 2018 Jun 28;174(1):172-186.e21 PMID: 29958106 PMCID: PMC6211564 06/30/2018
-
Preleukemia and Leukemia-Initiating Cell Activity in inv(16) Acute Myeloid Leukemia.
(Pulikkan JA, Castilla LH.) Front Oncol. 2018;8:129 PMID: 29755956 PMCID: PMC5932169 05/15/2018
-
(Illendula A, Gilmour J, Grembecka J, Tirumala VSS, Boulton A, Kuntimaddi A, Schmidt C, Wang L, Pulikkan JA, Zong H, Parlak M, Kuscu C, Pickin A, Zhou Y, Gao Y, Mishra L, Adli M, Castilla LH, Rajewski RA, Janes KA, Guzman ML, Bonifer C, Bushweller JH.) EBioMedicine. 2017 Nov;25:188 PMID: 29104075 PMCID: PMC5704058 11/07/2017
-
C/EBPα deregulation as a paradigm for leukemogenesis.
(Pulikkan JA, Tenen DG, Behre G.) Leukemia. 2017 Nov;31(11):2279-2285 PMID: 28720765 PMCID: PMC8197657 07/20/2017
-
(Choi A, Illendula A, Pulikkan JA, Roderick JE, Tesell J, Yu J, Hermance N, Zhu LJ, Castilla LH, Bushweller JH, Kelliher MA.) Blood. 2017 Oct 12;130(15):1722-1733 PMID: 28790107 PMCID: PMC5639483 08/10/2017
-
Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers.
(Illendula A, Gilmour J, Grembecka J, Tirumala VSS, Boulton A, Kuntimaddi A, Schmidt C, Wang L, Pulikkan JA, Zong H, Parlak M, Kuscu C, Pickin A, Zhou Y, Gao Y, Mishra L, Adli M, Castilla LH, Rajewski RA, Janes KA, Guzman ML, Bonifer C, Bushweller JH.) EBioMedicine. 2016 Jun;8:117-131 PMID: 27428424 PMCID: PMC4919611 07/20/2016
-
(Illendula A, Pulikkan JA, Zong H, Grembecka J, Xue L, Sen S, Zhou Y, Boulton A, Kuntimaddi A, Gao Y, Rajewski RA, Guzman ML, Castilla LH, Bushweller JH.) Science. 2015 Feb 13;347(6223):779-84 PMID: 25678665 PMCID: PMC4423805 02/14/2015